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PART I INTRODUCTION

In the past decade there has been much activity in the development of computational methods

for the analysis of unsteady transonic aerodynamics about airfoils and wings. Advances have

paralleled developments in steady computational fluid dynamics (CFD) with a lag of

approximately five years 1 due to the additional requirement of time-accuracy. Also

contributing to this time lag is the sheer number of calculations required to perform flutter

analyses, a primary application vf ual_uduy _ru. riyu, u I, taken from the specification

document for U.S. military aircraft,2 illustrates significant features which must be addressed

in the treatment of computational unsteady transonic aerodynamics. On the plot of equivalent

airspeed versus Mach number, lines of constant altitude are straight lines through the origin

with decreasing altitudes represented by lines with steeper slopes. An airplane's flight

envelope is typically set by the maximum limit speed and a typical flutter boundary curve,

characterized by the flutter airspeed gradually dropping to a minimum in the transonic speed

range followed by a rapid upward rise. The ability to predict this minimum, termed the

transonic flutter dip, is of great importance in design, since the flutter boundary must be shown

by a combination of analysis and test to be outside the flight envelope by a margin of at least 15

percent in equivalent airspeed, i.e. the flutter boundary must be outside the dashed line

boundary in fig. 1. Subsonic linear unsteady aerodynamic theories have been quite successful in

predicting this flutter boundary for Mach numbers up to 0.6-0.7 but linear theory does not

account for the effect of aerodynamic shape or maneuvering conditions upon unsteady airloads at

transonic speeds. At these Mach numbers linear analysis has been used with more or less

success depending upon the severity of local transonic effects. The occurrence of flutter within

the flight envelope usually leads to structural failure and loss of the vehicle, highlighting the

necessity of careful validation of computational methods intended for use in this area. This is a

key difference in the utilization of steady and unsteady computational methods which should be

clearly understood.

Transonic Flow Phenomena

It will be helpful to distinguish the main features of steady transonic flow in order to

organize the discussion of unsteady aerodynamics. Figure 2, from ref. 3, indicates various

regions of transonic flow development for the NLR 7301 airfoil, a 16-percent thick cambered

supercritical-lype section. With increasing Mach number and moderate angle-of-attack, the

upper surface becomes critical between M = 0.4-0.7 with the first shock forming at an
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increaseof approximately0.1 in Machnumber. Pearcyet al.4 haveclassifiedseveraltypesof

flow separationwhich may occur. For conventionalairfoils the typical pattern, termedtype A,

involvesthe growthof a localseparationbubbleinducedby boundarylayerseparationat the

shockfoot, spreadingrapidlyto the traiiingedgeas Machnumberincreases. Thisconditionis

oftenaccompaniedbyunsteadyphenomenasuchas buffetandaileronbuzz3.Thesteepaft

pressuregradientsof modernairfoils,such as the NLR 7301,can lead to an alternatepattern,

termedtype B, in whichseparationprogressesfromthe trailingedgetowardsthe shock. Figure

2 illustratesthistype B separation,with fully separatedflow aft of the shockoccuringalong the

lineof maximumlift. Note the small"shockfree" designconditionoccuringovera small

isolatedrangeof lift coefficientand Machnumberjust prior to the onsetof trailingedge

separation.Tijdeman3notesthe flowconditonsin the regionbetweentheonsetof trailingedge

separationandfully separatedflow areverysensitiveto Reynoldsnumberand the locationof

transition from laminar to turbulent flow.

Figure3 showsa similardiagram,derivedfrom ref. 5, of attached,mixed,and separated

flow regionsfor a complete aircraft at free stream Mach numbers between 0 and 2.0. In region

I, the flow is predominantly attached. To obtain optimum performance and to avoid the-diag

penalty associated with flow separation, design cruise conditions for aircraft typically are

located in region I, near the boundary of region II (mixed flow).

As speed and/or angle of attack increase, a transition region of mixed flow (region II of fig.

3) is encountered. For rigid structures, this region is typified by the onset of localized regions

of flow separation which may exhibit significant aerodynamic unsteadiness. For realistic

flexible structures, the aeroelastic response of the structure interacts with the airflow to

induce much more complicated situations. For instance, structural vibrations can cause the

flow to alternately separate and reattach at flow conditions where a rigid structure would

support attached flow. The associated highly unsteady aerodynamic loading can interact with the

structure to cause unusual aeroelastic phenomena which may restrict the vehicle flight

envelope.

With further speed and/or angte of attack increases which may be encountered under

maneuvering conditions, stable separated flow conditions emerge (region III of fig. 3). Leading-

edge vortex flows and shock-induced vortex flows are of this nature. At still higher angles,

vortex bursting in the vicinity of the aircraft can cause severe buffeting. Within such regions

the flow is highly unsteady and accurate computations will require careful attention to

turbulence modeling.-
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While predictive methods for attached flows are reasonably well developed, the picket fence

in fig. 3 emphasizes the difficulty in predicting aeroelastic phenomena in the mixed and

separated flow regions. It also symoblizes novel features that are being encountered in

transonic flutter testing. Modern high performance aircraft are capable of maneuvering at

transonic speeds, leading to a much enlarged parameter space that must be considered in flutter

analysis and testing. Wing/store loading, fuselage interference, angle-of-attack, wing shape

and wing sweep all must be considered, and the traditional flutter boundary parameterization of

dynamic pressure at flutter versus Mach number may need to be augmented to adequately

describe aeroelastic stability boundaries. For instance, flutter tests give some indication that

the._p......................ndditinnnl pnrnmp.tp.r._ nffAc:.t...................th_ cl_t_ilprt _r_,'_l_etlt',v.v-.==..v v.=_,,,.y=t=hil|t ,...,_._nnt'l|t|nn,,.._,,,v,,,,,..,u,n_"_rth,_.,,¢.. {,,u,L_,'"l'tnt

boundary. Thus, the pickets of the fence in fig. 3 represent possible regions of low damping or

instability that might be encountered.

Farmer et al.6 provided early test results documenting the effect of airfoil shape upon

flutter boundaries. Figure 4 shows their comparison of flutter boundaries for two structurally

and geometrically similar wings of the same planform. The supercritical wing was a reduced

stiffness model of the modified TF-8A wing while the conventional wing had a symmetrical

section. The two wings had leading-edge sweep angles of 44.5 degrees. Design cruise Mach

number was 0.90 for the conventional wing and 0.99 for the supercritical wing. The

supercritical wing was shown to have a 25 percent lower minimum flutter dynamic pressure

near Mach 1.0 where type II mixed flow would be expected. Current transonic computational

methods are beginning to address this important area which will be a key topic for

computational aeroelasticity in the future. Other reports of aeroelastic model tests relevant to

this area are; single, mode flutter of a low aspect ratio wing studied by Erickson7, supercritical

wing flutter tests performed at the NLR8,g and torsional buzz of aeroelastic wings tested at the

RAE1 o.

Figures 5-8 illustrate four types of aeroelastic response which have been encountered and

which offer challenges for computational methods. The four cases illustrate problem areas

encountered near the boundaries of aircraft flight envelopes, as operating conditions change

from high speed, low angle conditions to lower speed, higher angle conditions. The nonclassical

aeroelastic response observed on the DAST ARW-2 wing model11, fig. 5, is a region of high

dynamic response at nearly constant Mach number which was encountered at dynamic pressures

well below those for which flutter was predicted. The motion is of the limit-amplitude type and

the response is believed to be associated with flow separation and reattachment over the
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supercritical wing (type II flow).

Figure 6 illustrateswing/storelimited amplitudeoscillationsexperiencedby modern,high

performanceaircraftundervariousloadingand maneuveringconditions at transonic Mach

numbers. Such oscillations can result in limitations on vehicle performance. The conditions

for which this response occurs appear to be near the onset of type II mixed flow. The response

typically increases for maneuvering flight conditions.

Dynamic vortex-structure interactions causing wing oscillations have been observed on a

bomber type aircraft 12 for high wing sweep conditions during wind-up turn maneuvers, fig. 7.

The flow involves the interaction of the wing vortex system with the first wing bending mode

and occurs over a wide Mach number range (0.6-0.95) at angles of attack of 7-9 degrees.

At higher angles, interaction of forebody and wing vortex systems with aft vehicle componets

results in vortex-induced buffet loads, illustrated in fig. 8. The figure shows the operating

conditions for which tail buffet may occur on a high performance fighter. Buffet of horizontal

tails can occur at intermediate .angles of attack and is a result of the vortex system encountering

the horizontal tail lifting surface. As angle of attack increases, the location of vortex bursting

moves upstream in the wake. Loss of lift is associated with the burst location reaching the

vicinity of the aircraft, and vertical tail surfaces located in such regions can experience severe

dynamic loads.

Historical Perspective

This field received an initial impetus in the mid-1970's from three sources: Tijdeman's3

pioneering experimental work on transonic unsteady pressure measurements, Magnus and

Yoshihara's demonstration of key transonic flow features for an airfoil with an oscillating

flap13 and the introduction of an economical transonic finite-difference solution algorithm by

Ballhaus and Goorjian14. Ballhaus 15 gives a survey of the field from this period. The AGARD

Structures and Materials Panel Subcommittee on Aeroelasticity has selected experimental

unsteady pressure data sets and defined two- and three-dimensional Standard Aeroelastic

Configurations16,17 to provide reference computational test cases for ihe development and

validation of improved computational methods. The data sets were obtained from rigid models

undergoing pitch and control surface oscillations and includes both conventional and

supercrilicaf airfoil geometries18,19,2o. In addition to these data sets, Sandford et al.21

summarizes a series of unsteady pressure tests made at NASA Langley and Tijdeman22 presents

a much used data set for a fighter wing configuration.
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Computationalmethodshave beenpursuedat a numberof differinglevelsof physical

approximationto the flow equations. MagnusandYoshihara13,23,24used an explicitalgorithm

to solvethe Euler(EE) equations. Stegerand Bailey25reporteda significantearly application

to the problemof aileron buzz using an implicitapproximatefactorizationsolutionalgorithm

for the navie.r-Stokes(NS)equations. Chyuand his coauthors26,27 have pursued further

applications of derivatives of this code. Most of the nonlinear unsteady computations to date

have been made by solving the potential equations, both with and without interacted viscous

effects. For example, the alternating-direction implicit (ADI) algorithm embodied in the

LTRAN2 code of Ballhaus and Goorjian14 enabled efficient solutions of the two-dimensional flow

frequency transonic small disturbance (TSD) potential equation through the use of large time

steps. Extensions of this ADI algorithm have been widely used by many researchers. A semi-

implicit form of the ADI algorithm is used in the 3-D XTRAN3S code28,29 developed for the

aeroelastic analysis of wings. Other TSD and Full Potential (FP) equation codes are described in

refs. 30-35. There is a growing" trend, especially for steady flows, towards use of the Euler

equations rather than the potential equations. Euler equation codes treating 2-D oscillating

airfoils are reported in refs. 36-40 while Salmond41 and Belk42 show results from 3-D Euler

eodes.

Over this same time period, several experimental investigations of periodic aerodynamic

flows about rigid airfoils have been reported. McDevitt 43,44 documented such conditons for a

very narrow range of Mach number of an 18 percent thick circular arc airfoil and Levy45

reproduced the effect with calculations from a NS code. Subsequently, Mabey 46 studied these

oscillations for circular arc airfoils with thicknesses of 10-20 percent. References 47 and 48

give details for a 14 percent circular arc airfoil. Related information regarding the interaction

of unsteady airloads caused by transitional boundary layers with structural oscillations is given

by Mabey et a1.49. Another class of separation-induced periodic flow problems, vortex shedding

about rigid cylinders and airfoils at high angle-of-attack, has been studied using NS codes for a

variety of Reynolds numbers in refs. 50-52.

Unsteady aerodynamics has been the theme of four recent AGARD conferences 53-56 whose

proceedings contain a wealth of information. Survey papers focusing upon computational

requirementsand resources are given by Peterson 57 and McCroskey et al.58. Summary papers

of the 1984 and 1985 AGARD conferences are given by Mykytow59 and by Mabey and
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Chambers6O.The latter referencemakesrecommendationsregardingcomputationaland

experimentalmethodsfor unsteadyflowphenomenaanddrawsparticularattentionto the needto

pay carefulattentionto the natureof shockmotions. The periodicoscillationsabout circular

arc airfoilsare recommendedas benchmarkcomputationalcasesfor all time-dependent

transonicviscousflow theories. Zwaan61 surveysaeroelasticproblemsin transonicflow while

Deiwert62reviewsthe numericalsimulationof unsteadyinteractiveflows. Finally, Mabey63

gives a reviewof pertinentexperimentalresearchon time-dependentaerodynamics.

Experimental Data Sets

In this section, the airfoil geometries and wing planforms which have been most frequently

studied are summarized. In addition to the AGARD standard configurations, several other model

tests have been popular for comparison with computational results. Figures 9 and 10 show the

profiles and planforms of the 2-D16 and 3-D 17 AGARD configurations, respectively. Data sets

for all of these configurations except the 6 percent parabolic arc, DO A1 and MBB-A3 airfoils

are given in refs. 18, 19, and 64. Tables 1 and 2, from ref. 1, tabulate selected references for

these and other configurations in whrch comparisons of experimental and calculated unsteady

pressures are given. The entries are grouped by the equation level of the physical modeling used

for the calculations. The references are not exhaustive but are an attempt to indicate

publication of significant experimental/computational comparisons or new capability.

The first three airfoils in Table 1 are conventional airfoils with 6, 10, and 12 percent

thickness ratios. Tijdeman 3 tested the NACA 64A006 airfoil with an oscillating quarter-chord

trailing-edge control surface. Interpretations of these tests 3 have provided insights into the

underlying mechanisms of unsteady transonic flows. Tijdeman indentified three types of shock

motion, denoted type A, B, and C. In type A shock motion, the shock wave remains distinct

during the oscillation cycle, with a periodic variation of shock location and shock strength. In

type B shock motion, the shock wave weakens and disappears during a portion of the cycle,

generally during the forward propagation of the shock along the surface. For type C motion, the

shock wave on the airfoil remains distinct and propagates forward along the airfoil chord and off

the airfoil leading-edge.

Davis and Malcolm65 tested the NACA 64A010A airfoil for pitching oscillations. Two cases

from this test'have been widely studied: a case with a moderate shock wave at M = 0.8 and _ = 0

degrees and a case with steady shock-induced separation at M - 0.8 and o_= 4 degrees. The NACA
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0012 airfoil, tested by Landon18, differs from the other entries in Table 1 in that it was tested

for larger dynamic pitching amplitudes and for transient ramping motions making it suitable

for dynamic stall computational studies. McDevitt and Okuno66 have reported measurements of

periodic shock-induced oscillations for this airfoil.

Data sets for the 16 percent thick supercritical NLR 7301 airfoil are given by both

Tijdeman and Davis18 and the shock-free condition for this supercritical airfoil has been a

challenging computational case. The 8.9 percenl thick MBB A-3 airfci! has been tested by

Zimmerman67 and represents a less severe supercritical airfoil computational case. Other

supercritical airfoils tested for oscillatory motions or exhibiting unsteady behavior are: a 12

percent thick airfoil tested for pitching, heaving and flap rotation by den Boer and Houwink68,

the RA16SC1 airfoil tested by ONERA 69, and the cryogenic test of a supercritical SC(2)-0714

airfoil by Hess et al.70. Reference 68 reported large dynamic responses of airloads on the

supercritical airfoil for both oscillating and static motions at type II flow conditions and

introduced the concept of "aerodynamic resonance." Similar periodic shock-induced oscillations

are reported for the RA16SC1 airfoil69.

Tests of rigid circular arc airfoils have been reported by McDevitt et a1.43, McDevitt44,

Mabey 46 and Mabey et a!.47. References 43 and 44 give details of tests of an 18 percent thick

airfoil for Reynolds numbers of 1 million to 17 million, covering laminar to fully developed.

turbulent flows. The wind tunnel walls were contoured to approximate the inviscid stream-

lines over the airfoil at M -- 0.775. Periodic unsteady airflows were observed over a narrow

Mach range whose extent depended upon whether Mach number was increasing or decreasing.

For increasing Mach numbers, oscillations occurred for 0.76 < M < 0.78 while for decreasing

Mach number the range was wider, 0.73 < M < 0.78. The frequency of the oscillations was 188

_+3Hz (reduced frequency k = 0.48 based upon semi-chord). Mabey46 studied similar periodic

flows for a series of circular arc airfoils ranging in thickness from 10 to 20 percent at

Reynolds numbers of 0.4-0.6 million. In ref. 47, further investigations on a larger 14

percent thick biconvex wing at Reynolds numbers of 1-7 million is reported. Two necessary

criteria evident from the experimental results for the existence of the periodic unsteady flow

are given: thickness/chord ratio greater than 12 percent and local Mach number upstream of

the terminal-shock wave in the range

1.24 < M < 1.40

McDevitt44 identifies the predominant shock motion for the 18 percent thick airfoil as type C
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whereasMabeyet a1.47arguethat it is typeB motion.

The smallernumberof entries in Table 2 reflects the situationregarding3-D testing in

that thereare fewerexperimentaldatase',swidelyavailableand fewercomparisonsof

experimentalandcalculatedresultshave beenpublished. Tijdeman22testeda modelof the F-5

fighterwing includingexternaltanksand stores. Thiswing has an aspectratio of 2.98, a taper

ratioof 0.31anda leadingedgesweepof 32 degrees.The relativelythinwingsection,a

modifiedNACA64A004.8,has madethis a popularcomputationalcasesince it is wellwithin the

capabilityof TSDcodes. Transonicandlowsupersonictest conditionsareavailable. Of the

AGARDStandardConfigurationmodelsshownin fig. 6, theNORAmodelis themostextensively

tested. It is a modelof the MirageF-1 horizontaltailwhichhas beentestedin four European

wind tunnels17,18.

TheAGARDrectangularwingandthe RAEWingA modelhavesymmetricairfoil

sections17,18,2owhereasthe ZKPwing and LANNwing have supercriticalairfoil sections17,19.

Additionalmodelstestedfor oscillatorypitchingare the NASARectangularSupercriticalWing

(RSW)modelTt,72andthe RAEAGARDtailplanemodel64.Theformerhada 12percent

supercriticalairfoilsectionwhilethe latterhada NACA64A010Asection,the sameas one of

theAGARD2-Dconfigurations.

Also includedin Table2 are referencesto severalotherpublishedcomparisonswith

experimentaldata. Thesecasesareof interestsincethe modelswereaeroelasticandsome

comparisonsof experimentaland computedtransonicflutter boundaries(or aeroelastic

response)aregiven. Isogaigives comparisonsfor a high aspectratio supercriticaltransport

wing in ref. 34 and for the supercriticalwing flutter model of Farmer et al.6 in ref. 74.

Bennett et a1.75 give static aeroelastic comparisons for an aspect ratio 10.3 supercrilical wing

which was extensively instrumented for unsteady pressure measurements 76. Finally,

Guruswamy and Goorjian77 present calculations for a rectangular parabolic arc flutter model.

Cornputation_l Methods

A variety of fluid dynamic flow models is available to address unsteady aerodynamic

computations. The choice of an appropriate method calls for assessment of the difficulty of the

aerodynamic problem being addressed. Type I flows, fig. 3, include one of the most imporlant

aeroelastic analysis conditions, cruise at high dynamic pressure. Classical linear aeroelastic

analysis has been primarily focused upon this condition. The transition from type-I to type II
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conditionscan occurdue to aircraftmaneuveringwith little decreasein dynamicpressure.

Thus,aeroelasticresponseand stabilityof aircraftoperatingin type Ii flowscan be quite

importantalthoughthey haveonly recentlybeenbroughtwithin the rangeof computational
methods.

Computationalmethodsavailablefor unsteadyaerodynamiccomputationinclude;the
I I I1! .... % II J;_A.._L- ...... __ i-_ _'_

t, lCl=all..;dl _llllt::t_l I blll_ll LII:_LUlUdlIUId tJULUilLIPII equation _L,ou), nonlinear potential equation

(both Transonic Small Disturbance, TSD, and Full Potential, FP, Euler equations (EE) and

Navier-Stokes equations (NS).

Issues which have been central to unsteady CFD have been the choice of implicit versus

explicit algorithms, the stability of alternative solution algorithms and the treatment of

computa'tional grids. Explicit schemes are simple to code and easily vectorizable but are limited

in allowable time step by the stability limit imposed by the signal propagation time over the

smallest grid cell. Faced with the requirement of maintaining time-accuracy throughout the

entire field for aeroelastic computations, this easily leads to excessive computation times,

especially for viscous flow calculations where a very fine mesh near the surface is required to

resolve the boundary layer. The alternative implicit solution algorithms thus are favored and

attention must be given to their relative stability and accuracy characteristics. Grid generation

for unsteady problems in which the body boundary moves, such as for an oscillating control

surface or an aeroelastic deformation, raises new issues over those involved in steady flows. To

maintain accuracy, the body-conforming grid must be realigned with the body at each time step.

Schemes for accomplishing this have been studied as well as the necessity of moving the grid at

all. When body motions are small with perturbations mainly normal to the surface, imposing

boundary conditions on the mean surface location may be an acceptable approximation. Finally,

the nature of unsteady calculations means that the solution is not allowed to achieve a steady-

state and thus the dynamic response of numerical calculations on the computational grid is more

important. For example, grid cell stretching in the near and far field will affect the

computational impedance of the grid for unsteady calculations.

In the following sections the physical flow models will be described in order of decreasing

complexity, to be followed by discussions of typical results illustrating progress for the

various flow modeling levels. Since the historical trend is for computational methods to mature

most rapidly for the simpler flow models, this will lead us naturally from classical linear

results back to the Navier-Stokes equations. Along the way, capabilities such as the ability to

treat geometric complexity will be discussed.
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PART II FLUID DYNAMIC FLOW MODELS

Navier-Stokes Equations

Rumsey and Anderson78 give the thin-layer approximation to the Reynolds averaged Navier-

Stokes equations for two-dimensional flow. In the thin-layer approximation viscous terms are

resolved in a layer near the body where viscous terms in ,_, the direction along the body, are

neglected and only terms in 11, normal to the body are retained. The equations are written in

generalized coordinates and conservation form;

o_ A

- H v) = 0 (1) (

^ Q 1
Q=T =T

P

pu

pv

¢

^ 1

; G= T

pU

pUu + _xP

pUv + _yp

(¢ + p)U - _tt

(2)

^ 1

H= T

pV

pVu + rlx p

pVv + fly p

(e + p)V -rltp

0

l"]x'Cxx+ Tly'Cxy

Tlx'i:xy "F T_y_yy

Tlxbx + Tlyby

(3)
(

The curvilinear generalized coordinates (_, .q) correspond to the coordinates parallel and

normal to the body surface, respectively and are related to Cartesian coordinates (x, y) via the

transformation
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=(x,y,t), rl = (x, y, t), x=t (4)

Note that the transformation is time-dependent, allowing the grid to move to follow body motion

and giving rise to grid metric terms such as rltp in eq. (3). The contravariant velocities along

the rl and _ coordinate directions are

while the pressure is

r r e _yV
U = q,- +t=xU t

V = rlxU + rlyV + rl t

(5)

p = (y- 1) [e-lp (u 2 + v2)] (6)

The state vector Q represents the density, momentum and total energy per unit volume. The

Jacobean of the transformation is J, defined as;

j _ _(_, 1"1) ( 7 )
D(x, y)

The equations are nondimensionalized by the freestream density _'_. and soundspeed _'_. The shear

stress and heat flux terms are defined in tensor notation as;

M Ou. Ou. Ou k
- _ __..tJ) + k 8ij]

"_XiXj Re L [l't('_xt. + ax.
j l

(8)

M c3 (a 2)

qxi - [, ']
Re Lpr(7- 1) c3x. 1

(9)

Re L - M =m

e,o

(10)
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In (3), b is definedas
x i

= u l: - qxi ( 1 1 )bxi .I xi xj

Stokes hypothesis for bulk viscosity, _ + 21.t/3 = 0, and Sutherland's law for molecular

viscosity,

-- )312 ~ - -IJ-= _/I _. = (T/q" [('F + c) / (2" + c)] ( 1 2 )

are used, with _** -- freestream temperature = 460 ° R, and "c = Sutherland's constant = 198.6"

R.

Boundary conditions are applied explicitly. No slip, adiabatic wall conditions, as well as

zero normal pressure gradient conditions are applied on the body

u=v=O (13a)

(

p 3 (a 2)
-0

(13b)

In the farfield, a quasi-one-dimensional characteristic analysis is used to determine boundary

data. For turbulent calculations, turbulence modeling such as the algebraic eddy viscosity model

of Baldwin and Lomax 79 is required. (.

Euler Equations

For sufficiently large Reynolds numbers the major effect of viscosity is confined to a thin

viscous boundary layer near the surface of a solid body. As a consequence, the inviscid portion

of the flowfield may be solved independently of the boundary layer. The reduced set of equations,

termed the Euler equations, are obtained by dropping both the viscous terms and the heat

transfer terms from the Navier-Stokes equations. Reference 80 contains details and discusses

consequences of these assumptions. Anderson et al.81 present the three-dimensional Euler

equations in generalized coordinates for a moving grid mesh in a form analogous to eqs. (1-7).

With the generalized coordinates- _ and _ prescribed parallel and q normal to the body surface



15

the equations are

A A A A
_F bG _H

bQ + +_+ 0
(14)

where

Q 1
=T=T

a

P

pu

pv

I" *"

e

A 1

J.

J q

pU

pUu + _xP

pUv + _yp

nl Tw -a,-_ n
;.. .... ._Z r

(e + p)U - _t p

(15)

A 1
G=m

J

pV

pVu + rlx p

pVv + rlyp

pVw + rlzp

(e + p) V - rltp

A 1

H= T

pW

pWu + _p

pWv + %p

pWw + _Lp

(e + p) W- _[

(16)

The pressure p and the contravariant velocities U, V, and W are given by straightforward

extensions of eqs. (5) and (6). The grid transformation metric variables are given by;

_x = J(YrlZg - znYg)' rlx = J(zy_ - y z), _x = J(y.z - z_y n).qrl

_y = J(zx - x z),rly = J(x_z - z x), _y =J(z_x n- x_z n)

_z = J(xnY ;- YnX; ), rlz = J(xy_ - y x), _z = J(x_Y n " Y{Xn)

(17)

_'t=-x:_ -y_y-z_z, rlt=xrlx-y, rly-Zxq z, _t='X,_x-Y,_y-Z_z

In ref. 81 the boundary conditions are applied explicitly. On the body, the contravariant
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velocity normal to the body is set to zero

w

v =w I =o (18)

and pressure, tangenial velocities and density are determined by extrapolation from the

interior. In the farfield, a quasi-one-dimensional characteristic analysis is used to determine

boundary data.

While the Euler equations do not treat viscous and heat transfer effects, entropy and

vorticity effects allow treatment of flows with strong shock waves (which generate entropy)

and moderate-to-high angle vortex dominated flows. Even though viscosity is eliminated, no

explicit Kutta condition enforcing smooth flow from the trailing edges of lifting surfaces is

required since "numerical" viscosity generated by finite difference solutions provides this

effect.

(

Potential Equation

If it is assumed that the flow is irrotational then the velocity field, V, can be shown to be the

gradient of a scalar field variable, the velocity potential ¢, (see ref. 80 for details)

V=VO ( 1 9)

The conservation form of the continuity equation for two-dimensional flow becomes (ref. 82)

Pt + (PcPx)x + (P_z)z = 0 ( 2 0 )

For barotropic, isentropic flow the momentum and energy equations yield the compressible

Bernoulli equation from which the density p is determined.

1

2.. t x (21)

The spatial coordinates, x and z, are normalized by airfoil chord c, and time t is normalized by

aWc. Density and _#are normalized by p= and a=c.

Again, solutions are obtained for body fitted generalized coordinates which allow for body and

C
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grid motion. Note that here and in the following small disturbance potential equation, the

coordinates x and z are the freestream direction and the direction normal to the lifting surface

respectively. The transformation to a body-fitted coordinate system is given by

_=_(x,z,t), _=_(x,z,t), l:=t (22)

The strong conservation form of eq. (2_0) is maintained by writing the continuity equation as

._. pW(j_-.)_+ ( )_ + (-'j'-')_; = 0 ( 23 )

Equation (21) transforms to

p={I+-_[M_-2*_-(U

1

+ _,)_ - (w + _,)_1 }-t4 ( 24 )

Where the contravariant velocities are

(25)

and J = _x_z- _z_x

Bernoulli equation as

The isentropic pressure coefficient is derived from the compressible

2

Cp- _ M2 (p_f - 1) (26)

The airfoil boundary condition that the flow be tangent to the airfoil is satisfied by requiring W

= 0 on the airfoil. For lifting flows, the shed vorticity is represented by a jump in potential

across the wake line. For isentropic flows the condition is

F=+<W>F =0 (27)

where F is the jump in potential across the wake, q_u __1, and <W> is the average of W above

and below the wake. In the farfield, the flow is set to freestream conditions
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O=M x, p=l (28)
c,o

Transonic Sm_ll Disturbance Potential Eauation

The Transonic Small Disturbance (TSD) Potential equation is derived from the inviscid

Euler equations assuming that the flow is a small perturbation of a steady uniform flow, U=,, in

the x direction (see, for instance, ref. 83).

the perturbed velocity components u, v, w.

The TSD velocity potential function, 0, describes

U=_x.x, v=_y-y, w=o3--_. (29)

(

where the total velocity in the x. direction is U=.=+ u.

TSD potential equation in conservation form as

af° aq af2 af3
W +-_-_+-_--y+W =o

References 84 and 85 give the modified

(30)

where

f = -A_t- BCx

fl = Zqbx + F_ + G_

f2 = _y + Hq_x _y

(31)

f3 =_z

Time, t, and the Cartesian coordinates x, y, and z are nondimensionalized by the freestream

velocity and wing reference chord.

The coefficients A, B and E are defined as

9 9

A = M-, B = 2M-, E = 1 - M 2 (32)
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Several choices are available for the coefficients F, G and H depending upon the assumptions used

in deriving the TSD equation29. Briefly, the coefficients are referred to as "NASA Ames"

coefficients when defined as

1 1
F = - w(T + 1) M2' G = ._-(?- 3)M 2, H = - (y - 1)M 2

L

(33)

and are referred to as the "NLR" coefficients when defined as

,, 1 M 2 M 2
F=-I[3-(2-y)M"]M 2, G=-._ ,H=-

The "classical" TSD coefficients are given by

1
F=-_-(?+ I)M 2, G=0, H=0

(34)

(35)

and finally the coefficients for the linear potential equation, valid for subsonic and supersonic

small perturbation flows, are

F=G=H=0 (36)

The TSD equation (29) is distinguished from the higher equation level flow models in that,

within the small disturbance assumption, the computational grid is not required to move with

the body since boundary conditions are imposed at the mean plane, usually z = 0+. The wing

flow tangency condition boundary condition is

_z = +ft (37)

where f+ (x,y,t) = 0 describes the upper and lower body surfaces. The trailing wake boundary

conditions are

[(_x + _t] = 0 ( 3 8 )

[_z] = 0 ( 3 9 )
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where [ - ] indicates the jump in the indicated quantity across the wake. Equation (37)

enforces the convection of vorticity downstream from the trailing edge and eq. (38) requires

continuity of the z component of velocity, w, across the wake. The pressure coefficient may be

computed using either linear or nonlinear forms of the Bernoulli equation. The exact nonlinear

equation is given by eq. (30) where the appropriate density equation for eq. (30) is

1

222 ,,P = [1 - (2 x + %,+ + ¢'z+ 2 ¢,,)] (40)

Alternatively, the linearized Bernoulli relation gives (

Cp = -2 ((_x + ¢_t) ( 4 1 )

While eq. (41) is the proper choice based upon formal order of magnitude reasoning, the higher

order terms in eq. (40) are sometimes not negligible for cases of interest.

t=orfielO Boundary Conditions: Two forms of farfield conditions have been used for the

unsteady TSD equation. Table 3 lists these as "reflecting" and "nonreflecting" boundary

conditions. These terms are descriptive only and indicate the relative effects of the two sets of

conditions upon unsteady calculations. The nonreflecting conditions are derived 87 from a

characteristic variable analysis of solutions to eq. (30) in the farfield. They are implemented

as first order plane wave conditions and are intended to prevent the reflection of a major

portion of signals incident upon the boundaries back towards the vicinity of lifting surfaces.

Note that in the steady state, the time derivatives in eqs. (40 b-g) vanish resulting in simple

Neumann "reflecting" boundary conditions. Proper grid design is very important for unsteady

calculations and involves consideration of grid extent, grid stretching and boundary conditions.

If any one of these factors is not properiy treated, spurious unsteady results may be observed.

It is noted that an alternative farfield boundary condition has been shown to be superior for

two-dimensional steady calculations. Imposing conditions appropriate to a point vortex of the

appropriate strength to match lift87 has yielded solutions of the Euler equations which were

insensitive to computational grid extent, leading to efficient solutions for small grid extents. No

(_
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Table 3. Farfield boundary conditions for the

= 1%,_i i I;_,s L01 I_,J

Upstream _ = 0

Downstream _x + (_t= 0

Unsteady TSD potential equation

Above Cz = 0

Below Cz = 0

Right spanwise _y : 0

Left spanwise _>y= 0
(for full-span modeling)

Symmetry plane _>y= 0
(for half-span modeling)

C = E + 2q_x , D = J4A+ B2/c

Nonrefiecting

¢ =0 (40a)

1 -B D

T ("_"+"_ )¢,+ ¢,,=° (4Oh)
V_

D

_- (_,+ (_z= 0 (40C)

D

._.¢,-¢ =o (4Od)

D

_¢t+¢y =0 (400)

D
_-¢t- Cy =0 (4Of)

Cy=O (40g)

Linear Small Disturbance Potential Equation

When the coefficients of eq. (36) are used in eq. (30) the classic,al linear potential equation

results. In dimensional form as given in ref. 88 it is

1 2M 2

V20- -T *,- T- Ox_- M *x_
a .,,

oo

=0 (43)
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Equation (43) holds for small disturbances from freestream conditions for subsonic and

supersonic flight.

Special cases of eq. (43) have been extensively studied and closed form solutions are

available for some cases. In other cases, asymptotic methods provide insight into the form

required of numerical solutions. Since these linear solution methods are well calibrated with

regard to important issues, such as wing flutter, for speeds up to high subsonic Mach numbers,

it behooves practitioners of unsteady CFD to verify their methods, wherever appropriate,

against these linear methods.

The important case of steady state, simple harmonic motion has been most extensively

studied. With body motion and potential assumed given by

io_t
f:t (x, y, t) = f'+ (x, y) e (44a)

-- ;.ot

(x, y, z, t) =_ (x, y, z) e (44b)

(

eq. (40) becomes

2

- - 2Mira _ +-_---q_ = 0 (45)(1 - M 2) _xx + _yy + (_zz a x
** a

Equivalently, eq. (45) results from applying a Fourier transformation to the time variable in

eq. (43). Equations (43) and (45) present the governing equations for unsteady linear

aerodynamics in the time domain and the frequency domain. The time domain approach has been

valuable in giving insight into the nature of solutions for small values of nondimensional time.

On the other hand, the frequency domain approach has provided the majority of the working

methods used in aeroelastic design and analysis.

The time domain form of eq. (43) is the basis of the "acoustic planform" analogy used in ref.

97 to calculate the initial transient pressures and loads on airfoils and wings undergoing

sinking and pitching motions. Figure 11 shows pressures on an impulisvely started sinking and

pitching airfoil for several times during the first four chordlengths of motion. The Mach

number is 0.8. The discontinuity in slope of the pressure indicates the progress of the

upstream trageling pressure pulse generated at the trailing edge by the impulsive motion. This

pulse travels at a speed of (a,_ - U). The faster downstream traveling pulse (with velocity a= +

C
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U) can be seen in fig. 11(a). The resulting lift and moment transients for several Mach

numbers are shown for the first 10 chordlengths of travel between 0 and 2 in fig. 12.

Reference 88 discusses the use of piston theory in determining the starting value of pressure

and integrated loads. At t = 0 the pressure is a function only of the local normal velocity of the

surface, Uo

p-p**=p a u ° (46)

This leads to equations such as the following for the initial lift coefficient per unit angle of

attack for any plane wing at any Mac_ number

dcl(o)

doc

4

M (47)

Reference 97 also contains time-accurate solutions of eq. (43) for 3-D wings in supersonic

flow.

In the alternative frequency-domain approach, extensive use has been made of fundamental

solutions (Green's functions) of the governing equation such as the source and vortex potential

functions for incompressible flow and the acoustic source pulse and doublet for compressible

flow. Due to the linearity of eq. (43), superimposed distributions of these fundamental

solutions are made to satisfy the boundary conditions. The assumption of simple harmonic

motion, eqs. (44), enables the manipulation of the resulting expressions into functions which

may be used to computed the strength of the singularity distribution.

For incompressible flow eq. (43) reduces to Laplace's equation

V2_ b=0 (48)

For two-dimensional flow and assumed harmonic airfoil motion, Theodorsen89 derived an

analytical solution of (48). Garrick and Rubinow9O give a closed form solution of (43) for this

same problem for supersonic flow while Possio's integral equation (see ref. 88) results from

operating upon eq. (43) to produce a singular integral equation relating known downwash

velocities, _'a(X), on the airfoil to the unknown pressure difference, _Pa (eq. 6-111, ref. 88)
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b

_a(X)_ 0) I APa(_) K (M, k(x- _--))d_; -b < x < b (4 9 )

p U 2 b-b

The kernel function, K, is composed of Hankel or Bessel functions and is a function of the Mach

number and the assumed reduced frequency of oscillation, k.

The corresponding singular integral equation for three-dimensional flow has been studied

extensively (see, for instance, refs. 88, 91, 92)

_(x, y)= 1 r I4"-_" Ap. (_, T1) K [M, k, (x- _), (y- T1)]d_drl ( 5 0 )
s

Inversion of eq. (50) via substitution of assumed series expansions for the unknown pressure

and numerical quadrature or collocation solution procedures have been used extensively for

aeroelasticians. Knowledge of the functional behavior of the pressure loading near surface edges

and slope discontinuities has been of great help in constructing suitable loading functions.

Tables 4 and 5, from Ashley's93 survey, illustrate the singular behavior of ACp near wing edges

and control surface boundaries. Note particularly the singular behavior for subsonic flow for

the cases of control surface edges. (logarithmic, - In Ix - Xcl) and for wing leading edges (~ (x

- Xl) -1/2) and side/trailing edges (- (y - yt) 1/2, (xt - x)1/2). Aeroelastic forcing functions

are calculated as weighted surface integrals of these pressure loading functions. Attempts to

perform these integrations numerically without acknowledging the possibility of such singular

behavior can lead to significant errors and influence solution convergence. Rowe and his

coauthors 94 have approached this issue by modeling the singular behavior explicitly in their

RHOIV "kernel function" computer code. With the singular portion evaluated analytically, the

remaining integral equation is regular and straightforward numerical solution possible. An

alternative method which is widely used is the doublet-lattice method of Albano and Rodden95.

Here the lifting surface is divided into small trapezoidal panels (fig. 13). Within each panel

line segments of acceleration potential doublets are placed on the panel quarter-chord line. The

unknown doublet line strength for each panel is determined by satisfying the known downwash

velocity boundary condition at the mid-point on each panel's three-quarter chord line. Thus the

problem is reduced to a linear set of algebraic equations for the doublet line strengths. The

choice of the 3/4 chord Iocalion for downwash evaluation is selected empirically upon noting

that this results in the Kutta condition being satisfied. This paneling method can be easily

(
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extended to multiple lifting surfaces as well as to body interference problems.

Comparisons96 of a convergence study comparing the RHOiV kernel function method and the

doublet-lattice method are shown in figs. 14 and 15. Figure 14 shows the real and imaginary

parts of unsteady lift and moment for an aspect ratio 4 wing pitching about its trailing edge at k

= 0.3, M = 0.9. For this case 6 terms were required for the assumed pressure loading function

in RHOIV in order to obtain convergence. The doublet-lattice results indicate that as usual the

lift converges faster than the moment and that, for this case, the generalized force magnitudes

converge quickly while the phase angles require more terms for convergence. Figure 15 shows

a similar comparison for hinge moment due to control surface oscillations of a rectangular wing
_JfT_l _*rf_ _|_.*,,r_|_ "1"_^ _^_J:4* ...... I. e,,a .................

........ o,.,,,,;,,.,_,..,.,...._,.,,.-,,,,.,,,. , ,,_ ,.,u,,u,,,,.,,,=,,_,_ ,,, = 0.6, _v,= 0.9 and 10 pfussure [errns were

required for convergence in RHOIV. For up to 18 panels per chord ( and up to 6 panels on the

control surface) the doublet-lattice result is converging slowly to the RHOIV result. For this

case, the kernel function is more efficient in terms of computer resource units (CRUs).

The behavior of solutions of (43) for Mach numbers near unity and/or for high reduced

frequencies is of interest for the insight which may be gained of the transition between subsonic

and transonic flows. Figure 16, from ref. 98, shows the pressure distribution on an airfoil

oscillating in plunge for three values of k. The oscillations, which are most apparent for k = 5,

are termed Kutta waves since, for this subsonic condition, they are generated at the trailing

edge. For 2-D flow, isolated source solutions of eq. (43) can be viewed as cylindrical pressure

waves radiating outwards from the source point at the acoustic speed, a_. Viewed from the

translating airfoil, two wave fronts traveling at relative speeds of a_ + U are seen on the z = 0

plane. For high subsonic speeds and low supersonic speeds, the upstream propagating wave,

a, - U, generates the surface pressure waves seen in fig. 16. The oscillations are in

quadrature, with the real part having a cos [R (x - 1)] dependence and the imaginary part

having a sin [R (x - 1)] dependence indicating an upstream propagating signal with wave

number

1_= MJ_(1 - _I) ( 5 1 )

radians per semichord. For M = 0.7 and k = 5 the wave number is 11.6 radians per semichord,

agreeing with the oscillations shown in fig. 16.

These pressure oscillations are also observed in solutions of (43) for low supersonic Mach
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numbers. The pressuredifferencefor oscillatoryplunging98is

[8k z x 4k -i_ox _X h o io_t
ACp (x, k) = - _ f (:vl, x_) + i_ e Jo (-;_-)] -if- e t52)

Figure 17, from ref. 98, gives results for M = 1.02 and k = 0.4. In this case the oscillations

are due to the overtaking of upstream traveling waves generated near the leading edge, leading to

the supersonic wave number R = Mk/(M - 1) of 20.4 radians per semichord seen in the

imaginary part over the forward part of the airfoil. Note the transition near midchord to an

oscillation of one-half this wavelength caused by the interaction of the two terms of eq. (52)°

These pressure oscillations influence the integrated airfoil loads for Mach numbers near

unity as shown in fig. 1898. The influence appears to be largest for low supersonic speeds. Also

noted the reversal of trend of Re(c0 for M - 0.7 - 0.8, a feature important for aeroelastic

analysis.

In concluding this section, the equivalence of the time-domain approach of eq. (40) and the

frequency-domain approach of eq. (45) is noted. Edwards98,99 discusses several

misconceptions regarding solutions of eq. (45) for diverging and converging oscillatory

motions. Valid solutions of eq. (4) for arbitrary motions are obtained via Laplace

transformation of eq. (43). Solutions are functions of the Mach number and the generalized

reduced frequency _, = b/U (c + ko). Generalized unsteady aerodynamic methods are becoming

widely used for aeroelastic analysis and in the design of active aeroelastic control systems.

Figure 1998 shows a typical result, with the unsteady lift coefficient of a wing given for rigid

plunging motions at M -- 0.5. Results are given as a function of amplitude, _, of motion for

three phase angles, e, where _; = }eie. Harmonic oscillation results are given by 0 -- 90 ° while

converging and diverging motion results are given by 120 ° and 60 ° respectively.

(

Accuracy and Resource Requirements

The previous section briefly surveyed solution methods which are available for the linear

potential equation. These methods are well developed and, for the most part, do not tax available

computational resources. This is definitely not the case for solution methods of the nonlinear

fluid dynamic" models to be considered in the remainder of these lectures. There are, in general,

no closed form solutions available for these equation sets and iterative numerical methods are

the rule. Computational unsteady aerodynamics requires careful selection of equation level
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f
\

based upon considerations of the flow physics involved, required accuracy and the number of

cases required to perform aeroelastic analysis. The discussion of figures 1-8 has summarized

the range of flow physics involved in current aeroelastic problem areas. Accuracy

requirements are dependent upon the type of flow as delineated in fig. 3. Table 6 summarizes

the current accuracy of predictions of key aeroelastic response mechanisms and suggests

accuracy requ rements for computational aeroeiastic analysis. Note that the current accuracy

level for high subsonic speed attached flow, the most relevant gage of current capability, is on

the order of 10 percent. Novel computational methods will have to do significantly better than

this to be competitive.

The resources required are a function of the numho.r...... nf ,"nmputer_..,.,v_,,=,,v,,_':^--required per

case and the number of cases to be calculated. Tables 5 and 6, from ref. 100, summarize the

resources required for typical aeroelastic analyses.

Table 7 indicates the computer resources required to perform a flutter analysis of a

complete aircraft configuration at one Mach number. Time-marching transient aeroelastic

response calculations are used to determine the flutter condition. This involves, on average,

four response calculations: two to calculate steady flow field conditions and two transient

responses bracketing the flutter speed. Modal frequency and damping estimates from the

responses are determined and the flutter speed interpolated from the damping estimates.

Calculations have been performed for a complete aircraft configuration with a transonic small

disturbance (TSD) potential code using 750,000 grid points. The calculation of one flutter

point for this case on the CDC VPS-32 computer would require 2.3 CPU hours. Estimates of

similar calculations using the full Navier-Stokes equations would require 77.8 CPU hours,

Conditions for this estimate are; a Reynolds number of 10 million, 7 million grid points and an

assumed computational speed of 100 million floating point operations per second (MFLOPS),

Table 8 summarizes computational requirements for flutter calculation of a complete flutter

boundary for wing/body/canard configuration on the CDC VPS-32 computer operating at 100

MFLOPS and on the NAS CRAY II computer operating at 250 MFLOPS. Again, four response

calculations per flutter point are assumed. It is assumed that ten flutter points will be

calculated to define the flutter boundary versus Mach number. The left hand column indicates

the difficulty of the flowfield calculation as defined in figure 1; type I for attached flows, type II

for mixed (alternately separated and attached) flows and type III for fully separated flows. The

second column indicates the fluid dynamic equation level needed to accura!ely model the flow

physics of the problem. Note that two-dimensional strip boundary layer models are assumed

for interactive viscous-inviscid calculations for the potential and Euler equation methods. It is
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anticipated that potential equation models will be adequate for flutter calculations of type I

attached flow conditions and may also be quite useful for some type II mixed flow cases. Full

potential equation codes will require about 50 percent more computer resources than TSD

methods due to the necessity of conforming, moving grids, among other considerations. Euler

equation methods should also be adequate for these conditions and, in addition, be able to treat

more difficult type Ill fully separated flows. Euler equation methods are estimated to require

approximately twice the resources of TSD methods. The full Navier-Stokes equations, which

should only be required for type II and III flows, require approximately 30 times the resources

of the Euler equations (at a Reynolds number of 100 million).
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PART III COMPUTATIONAL SOLUTION METHODS

In this lecture, methods which have been developed for the solution of the fluid dynamic flow

models described in Part II will be discussed. The presentation will be partly historical,

leading from the simpler TSD potential equation to the higher equation level models. Although

not always the case, this sequence broadly reflects the progression of research in this area.

Solution algorithms will be discussed and results both of historical interest and indicative of the

cJrrent state will be presented. It is he!pfu! to regard the evolution of progress in this area as

following four broad stages:

i.) Early computational demonstrations

i i.) Maturation of computational methods

i ii.) Application to realistic configurations

iv.) Type II mixed flow computation

The first three stages are those typically encountered in the development of any novel technology

within a given problem area..In the current context, they relate to development of capability of

type I attached flow (fig. 3 and Table 4) which has been a dominant focal point of applications.

The fourth stage listed serves as a caution to too rigid a categroization as parallel efforts for

type II mixed flow calculations have proceeded along side, and sometimes ahead of those for

attached flows.

A thread which may be discerned in reviewing this field is the continued evolution of

computational methods, with applications and evaluations by comparison with experiment, to

successively more difficult cases. Thus, for instance, an algorithm introduced to treat type I

attached flow cases is upgraded in capability to enable treatment of more difficult type I and

type II cases and possibly even some type Ill cases.

In the following, results of calculations for a number of the "Computational Test" (CT) cases

drawn from the AGARD Standard Aeroelastic 2-D 16 and 3-D17 configurations will be presented.

These experimental cases are mostly for harmonic oscillations of a wind tunnel model in a rigid

(i.e. the models have been made as stiff as is practical in order to minimize aeroelastic

deformations) degree-of-freedom about a steady mean condition which, for pitching

oscillations, is described as

= +oc sinkt (53)o (t) otm o

The reduced frequency is based upon reference semichord unless otherwise specified.
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Response quantities, such as lift coefficient, are measured or calculated for a sufficient

number of cycles such that a stable average for the time history of the response is available.

The response will, in most cases be cyclical at the frequency of the forced motion, k, but it will

in general not be purely harmonic. That is Fourier analysis of the averaged response of, for

example, the lift coefficient will give

Cl(t) = Clo + 2 [Ren(Cl) sin nkt + Imn(C1) cos nkt]; 0 < kt < 2_ ( 5 4 )
n=l

with both Ren (CI) and Imn (CI) having nonzero values for n > 1. Nevertheless, the fundamental

response at the forcing frequency, given by Re1 (CI) and Iml (CI) is most important since it is

most easily measured and almost always accounts for the largest part of the response. The

higher harmonics in the response given by the Fourier coefficients with n > 1 indicate the

degree of nonlinearity in the aerodynamic response.

The Fourier coefficients in eq. (54) may be obtained by several different approaches. If a

number of the harmonic coefficients are desired in order to study nonlinear behavior, then Fast

Fourier Transform (FFT) methods are most efficient. On the other hand, if only a few

coefficients are of interest, the traditional evaluation via numerical integration is efficient.

Finally, the following simple estimate of the fundamental response is useful

1

ReI(CI)--_[CI(t) - Cl(t) 3 ]-CI o (55a)
kt = _ kt = --'tt

2 2

1

Im I(C I)---_[C I(o)-C l(t) kt=n] - _o (55b)

(

C

TSD Potential Equation, 2-D

The two-dimensional TSD potential equation has been extensively studied at several levels of

approximation. Reference 101 gives details of an alternating direction implicit (ADI) solution

algorithm for the equation

c % + A %, = B 9xx + 0zz (5 6 )
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The potential is normalized by cU52/3 where c is the airfoil chord, and _ is the airfoil thickness

ratio. The coordinates x, z and time, t, are normalized by c, C/(31/3 and o.)-1where co is the

M2/(_ 2/3 where kc = coc/U. In theirfrequency of unsteady motion. The coefficient A = 2 k c .0

LTRAN2 code, Ballhaus and Goorjian14 implemented a solution of the low frequency version of

(50) by setting C = 0 and eliminating the time derivative terms the boundary conditions, eqs.

(37, 38). In ref. 14 B = (1 - M2)/52/3 - M m (7+ 1) _x where the choice of the exponent is

arbitrary. Reference 14 made m a function of M,, such that the critical pressure

coefficient, Cp , predicted by eq. (56) matched the exact isentropic Cp. Houwink and van der

Voorenl02 extended the range of applicability of LTRAN2 by adding the time dependent boundary

condition terms, and solving a modified TSD equation wherein B = (1 - M2)/8 zr3 - M_ (; + 1) 0x

where _ = 2 - (2 - y)M_ The resulting code was termed LTRAN2-NLR. WhitlowlOl

extended the LTRAN2-NLR code by implementing Rizzetta and Chin's lo3 solution of the complete

TSD eq. (50) where C = k 2 M2_/52/3. The resulting code was termed XTRAN2LlO4.
C

The ADI method advances solutions from time step n to time step n + 1 using successive

sweeps in the x and z directions

A 11 I1

x-sweep: m8 (_ij-(_ij)=D f. +$zz(_ij (57a)
At x . . x id ,

c . .n+l n n-1 A ((:l:)..+l 1 (0n.+l n
z-sweep: m ((_i,j - 2(_i,j + _)ij ) + "_t 5 --i,j - _i j) = "_ 5zz --i,j - (_i j) ( 57 b)At 2 , x , ,

where '_ is an intermediate level potential and

2
5x_ - (¢i,j - ¢_-_.)

Xi+ 1 - Xi_ 1

2 _i j+l " _ij

_zzd_ = fi+l Zj-1 [ " '- Zi+ 1 - Z i

(_i.j - (_i,j-I ]

zj- zi_1
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1 - M 2

fi.j = 2 ' '

1 - M 2

B.n "*
- 52/3 -M2(T* +l)¢n.i Jl,j

The mixed difference operator, Dx, is constructed to maintain conservation form.

spatial differencing results in the following form for Dxfi,j

Murman-Cole

D fi,j - 2 1"(1- El) (fi+l/2.j - fi-1/2,j ) + El-1 (fi-1/2,j " fi-3/2,j )] ( 5 8 )
x Xi+l _ Xi.1

(

!

0 C_i+l/2,j + C_i.1/-2. j > 0

1 C_i+l/2,j + C_i.1/2,j < 0

With,the LTRAN2 code, Ballhaus and Goorjian 14 were able to reproduce Tijdeman's 3 type A,

B and C shock motions for the NACA 64A006 airfoil with an oscillating flap. The motions were

also demonstrated computationally by Magnus and Yoshihara 13 and Magnus7 using an explicit

Euler equation code. Figure 20, from ref. 14, gives these three calculations. The computational

conditions for these cases are

C

Mach k flap amDlitude

A 0.875 0.234 1.0 deg.

B 0.854 0.179 1.0 deg.

C 0.822 0.248 1.5 deg.

These conditions are 0.15 - 0.28 Mach lower than Tijdeman's test conditibns, very likely due to

wind tunnel wall interference. The Euler code used a Lax-Wendroff explicit differencing



33

solutionalgorithmanda Cartesiangridwithanembeddedfine mesharoundthe movingshocks

wasused. Theboundaryconditionswereappliedat the meanairfoilposition. The Eulercode

used5484grid pointsand required1500secondspercyclewhereasthe LTRAN2code required

8 seconds(CDC7600computer)14.This significantreductionbroughtthe expenseof 2-D

unsteadytransonicCFDcalculations within the reach of many researchers.

f
L

Monotone Differencinq. It has been shown that Murman-Coie differencing allows stable

entropy-violating expansion shocks to be computed as part of the numerical solution104.

Reference 104 showed that it can also trigger numerical instabilities. Figure 21101 shows

such a case for the MBB A-3 airfoil oscillating in pitch about its leading edge at M = 0.8 and

k = 0.2. At k&t = 254 ° an instability is developing on the lower surface at the leading edge that

causes program failure within several iterations. When the monotone differencing scheme of

Engquist and OsherlO6 is used, expansion shocks are not admitted and significant increases in

allowable time steps over those allowed by the Murman-Cole scheme are achieved. The Engquis!

Osher (E-O) scheme was first used in implicit algorithms by Goorjian et al.lO5 and a similar

implementation is described by WhitlowlOl. The E-O method is incorporated into the ADI

procedure by modifying the mixed difference operator Dx in eq. (58) to:

Dxfi-1/2,j = Ax'fi-l/2j x i-1/2,j - Xi+l. xi.1

(-59)

The f and f operators are given in ref. 101.

In the following, examples of results from the XTRAN2L code will be discussed and

additional modifications to the ADI algorithm will be described. The nonlinear term, _x _xx,

leads to the formation of shock waves for transonic speeds which the numerical differencing

solution schemes are designed to capture. Pressures in the vicinity of a shock can vary in a

quite nonlinear fashion with respect to surface motion and the importance of this nonlinearity

in aeroelastic applications is of great interest. Typically, applications of unsteady

aerodynamics involve not the local unsteady pressures but their integrated value, weighted by

shape functions describing surface motion. In 2-D the lift and moment coefficients resulting
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from airfoilpitchingand plungingmotionsare the relevantairloads. It has beenobservedthat

these airloadsbehavein a sufficiently"locally linear" mannerthat linear harmonicanalysis

methodsarequiteuseful.

Pulse Transient Unsteady Airload Calculations. If the airload response to surface

motion is sensibly locally linear then airload frequency response functions may be determined

from Fourier transform analysis of transient responses. References 104 and 107 describe the

pulse transient method which is based upon this assumption. Starting from a converged steady

state solution the airfoil boundary condition eq. (37) is prescribed to simulate an exponentially

shaped pulse motion (e.g. pitch).

(z(t)= a° + o_Ie-w(t-t=)2 (60)

Fast Fourier transforms (FFTs) of the lift and moment coefficients and the angle of attack time

histories are calculated. The lift and moment FFTs are divided by the angle of attack FFT to

obtain the Cla and Cm_ frequency response functions. Figure 22108 shows a typical pulse

transient result for the NACA 0010 airfoil at M = 0.78 and ao = 0.0 °. The figure shows only

the early portion of the transient to illustrate the fluid dynamics resulting from the pulse.

Calculations are typically continued for ~ 1000 time steps to allow the loads to return to steady

state. Figure 23 shows the resulting airload transfer functions for this case and for similar

thickness NACA 64A010 and parabolic arc airfoils. This figure indicates the degree of

difference in unsteady airloads which results from the nonlinear transonic steady flow

condition. Figure 24 indicates the correlation between airloads obtained using this method and

the harmonic oscillation method for a six percent parabolic arc airfcil at M = 0.85. The pulse

shape is chosen to give reasonable results for reduced frequencies up to k ~ 2.0. Its use gives

considerable detail in the frequency domain from a single transient calculation resulting in a

considerable reduction in cost over the harmonic oscillation method.

In order to obtain accurate results with the pulse method careful attention to numerical

details is required. In order to avoid spurious low frequency results, the starting value of _(t)

in eq. (54) should be equal to ao. For realistic pulse amplitudes, _1, w and tc should be chosen

so that cc (o)'- czo = al e-Wtc**2 < 10-6. Also, the method is quite sensitive to lack of

c;onvergence in the starting steady-state solution. Drift in the unforced (_1 = 0) lift coefficient

(
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of 10-3 - 10-4 can again cause significant low frequency errors.

Computatign_l Grid Dynamic Effects

The pulse trnasient method has been an effective tool in studying the effect of the

computational grid upon unsteady calculations. Reference 107 uses this pulse transform

technique to demonstrate key features of the relation between computational grids, boundary

conditions, and dynamic calculations. The importance of controlling reflections of dislurbances

from the outer grid boundaries and from internal grid points is shown in fig. 25. In order to

compare with linear theory, the case of a flat plate airfoil at M ---0.85 is shown. Three lift

coefficient responses resulting from quickly pitching the airfoil from 0 to 1 degree and back to

0 are given. In figs. 25(a) and 25(c) the default XTRAN2L grid given above was used while in

figure 25(b) an exponentially stretched grid extending +200c in x and +2327c in z was used.

The latter grid contained 113 x 97 points in the x and z directions. The default XTRAN2L

grid107 is 80 x 61 points in x, z and covers a fixed physical domain extent of +20c in x and

+25c in z. An algebraic grid stretching is used to distribute grid points between the airfoil and

the outer boundaries. This grid point distribution was selected to alleviate disturbances which

can be generated in regions of large grid stretching. On the airfoil the x-grid has 51 grid points

having a uniform spacing of 0.02c with an additional point near the leading edge. Figure 25(c)

was obtained using the non-reflecting boundary conditions given by Table 3 while figs. 25(a)

and 25(b) utilized reflecting boundary conditions. Of parlicular importance are the outer

z-boundaries. The disturbance at "_= 40 in fig. 25(a) correlates with the acoustic propagation

time for travel to and return from these boundaries. The option of moving these boundaries to

large distances, as in fig. 25(b), introduces the complication of severe grid-stretching in the

near-field. In this case, reflections from the outer boundaries do not occur, but disturbances

seen from ._,, 20 to 50 correlate with propagation times for travel to and return from regions

of the z-grid where grid spacing first becomes more than two chordlengths. Neither of these

anomalies is seen in fig. 25(c).

Figure 26 gives the Clot frequency responses calculated from these-transient responses.

Reflections from the outer z-boundary, fig. 26(a), contaminate the unsteady airloads at low

reduced frequencies, k < 0.15, whereas the distrubances originating from the near-field grid

stretching, fig. 26(b), contaminate the airloads in the frequency range 0.2 < k < 1.0. Figure

26(c) shows that excellent agreement with linear theory can be achieved for moderate

frequencies. Other calculations verify that these features, which are rfiost eas_y studied for
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linearizedexamples,carry over to nonlineartransoniccalculations. Reference109 gives

further examplesof computationalgrid effects for unsteady3-D calculations.

Vis¢ous-lnviscid Interaction. The inviscid TSD equation (56) does not incorporate

viscous effects which can be important for high speed flows. It is possible to account for

unsteady viscous effects by coupling a viscous boundary-layer model with an otherwise inviscid

analysis. As commonly implemented, the inviscid outer flow solution provides the surface

pressure distribution needed to solve the boundary layer equations. This yields the boundary-

layer displacement thickness distribution which is used to modify the airfoil surface tangency

boundary condition for the next iteration of the outer inviscid flow solution.

Howler0 o describes such a method implemented in the XTRAN2L code. The effect of a viscous

boundary layer for attached turbulent flow is modeled in a quasi-steady manner by means of

Green's lag-entrainment equations 111 as implemented by Rizzetta 112. In this integral method

the displacement thickness qS*is computed as a function of the boundary-layer momentum

thickness 0 and the shape factor H:

8 =O.H (61)

The functions O and H are determined together with the entrainment coefficient CE from Green's

lag-entrainment equations. In the nondimensional variables consistent with eq. (56) these

equations are

(

d Cf M2-E 2/3 0
_" (O) = fl + f2_xx = _'-(H + 2- e) "_xx (62)

0 dH H1 dH dH 2/3

c dx - f3 + f4_xx = (CE" "_'- Cf)'_l" 1 + HI(H + 1) _ 0-"_xxc
(63)

0 dCE 2.8 1/2 _ )_C1/2]
c dx - f5 + f6qbxx = F {H + H l [(C'_)EQO
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+(.uO- dUe _ 2 _ 213 0
e _ )EQ} - F [1 + 0.075M 2e ....1 + O.1M 2 .le c _xx

e

(64)

The subscript e in these equations refers to the quantities evaluated at the boundary-layer edge,

the subscript EQ denotes the equilibrium conditions, and the subscript EQO denotes the

equilibrium conditions in the absence of secondary influences on the turbulence structure.

Expressions for the functions contained in eqs. (62) - (64) are listed in Appendix A of ref.

100.

r_,--,,,,n,._.l'r,,_,"am _f thn 'l'r,.'nHinn_t_e.lna *ha earn,", a_tT."al';_ne _r ,'_ _nnl{,"_X 'l't_ _at',h elt"l e_ nf th,", wzko

surface independently with the skin friction set to zero and the dissipation scale length doubled

to account for the observed far field behavior of wakes.

Coupling between the boundary-layer and inviscid analysis is through the boundary

conditions on the airfoil and wake, eqs. (37) and (39), which are modified to

+ + "/SC)_x ( 6 5 )

[d_z]= [G/GC)x] ( 6 6 )

Coupling between the inviscid analysis and the boundary-layer is through the quasi-steady

pressure gradient, _xx, in eqs. (62) - (64). Explicit coupling between the boundary layer and

the inviscid solution is used for the airfoil boundary condition, eq. (65), since this allows a

substantial increase in the allowable time step. That is, the last term in eq. (65) is evaluated

as

((_ /(_C)x = _ Xi+l - Xi_1 (67)

In the next section results calculated with the XTRAN2L TSD code are compared with

experimenta! results. Results from the interactive viscous-inviscid model will be designated as

IV-TSD
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Twc2-Dimen_;ional Tran_;oni_ (_alculations

In this section, comparisons of calculated and experimental unsteady pressures are given for

the NACA 64A006 airfoil, the NACA 64A010A airfoil and the NACA 0012 airfoil. The cases are

chosen from the AGARD Standard Configuration Computational Test (CT) cases 18 presented in

refs. 100 and 113.

NA(_A 64A006. Tests of this airfoil3 all involve oscillation about zero mean angle of a flap

with hinge axis located at three-quarter chord. The steady flow pressure distributions for Mach

numbers from 0.80 to 0.875 are shown in fig. 27. At M = 0.85 the IV-TSD model results agree

well with the data while at M = 0.875 the viscous results correct roughly one-half of the

discrepancy in the inviscid shock location. Post-shock pressure levels are well predicted by

the IV-TSD model. Figure 28 shows the displacement thickness, 8" for these cases. The

thickening of the boundary layer by the shock is apparent for M = 0.85 and 0.875. Figure 29

shows unsteady upper surface pressures at a low reduced frequency, k = 0.06 and at a moderate

reduced frequency, k = 0.24. Figures 30 and 31 show the corresponding airloads for these

cases. In general, the agreement between experiment and calculations improves with decreasing

Mach numbers and increasing frequency. As for the steady pressures, the unsteady results in

fig. 29 indicate that the IV-TSD model accounts for a portion of the discrepancy in the shock

pulse. The airloads show reasonable agreement with the data for the lower Mach numbers with

trends also reasonably predicted. However, with the onset of significant transonic effects at

M = 0.85 it is obvious that further computational improvements are called for. Note, in

particular, that linear theory continues to perform well for these cases.

NACA 64A010A. These cases are for the model tested at the NASA Ames Research Center62 in

which the model had a small amount of camber and was 10.6 percent thick. These cases are for

the model pitching about the quarter-chord at nominally zero degrees pitch angle. Figure 32

gives the calculated and measured steady pressures for M = 0.5 and 0.796 and the displacement

thickness for these cases is.given in fig. 33. At the lower Mach number, agreement is very good

with almost no viscous effect evident. At the higher Mach number, the viscous results move the

shock forward several percent chord and slightly weaken the shock strength. The data sets

encompass Reynolds numbers variations ranging from 2.5 x 106 to 12.5 x 106 based upon

chord and fig. 33 shows the resulting predicted variation in displacement thickness. Figure 34

shows the upper surface unsteady pressure for M = 0.5 and k = 0.10. There is excellent

(
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agreement for this case which is typical of other results for this Mach number. Figure 35

shows upper and lower surface unsteady pressures at M = 0.796 for reduced frequencies from

0.025 to 0.3. Pressure levels ahead of the shock are generally well predicted. The invisc_d

shock pulse is too strong and too far aft, with both effects being improved by the IV-TSD model.

The viscous model also improves the post-shock pressure comparisons. Still, there is again an

evident need for further increases in accuracy in the region of the shock which is also apparent

,,, the .... ,A_..,. _..,^^..,. _,. .... • ,.._ ,,,^,^ ,_. ^k,_,.,.,,.,,.,,;,-,;,...,,,.,,.,.,,.,-,_;,-.,;,-,,-,,.,f /,..__._ atul,_t_,,-,,.,y .-,,,,,..,,..,,.,oo,,vW,, in ,,y. 36. ,,,VL,=,,,e ,,.,,,_, o,..,,,- ,o,,,., ,.,v,=,_,,_,.,,,..,,,.,,,v, _,-,-,,,.i

low values of k only a portion of which is corrected by the viscous model. Similarly, the values

of Re (cm_) at low values of k appear to have an anomalous trend. Trends due to amplitude of

oscillation are well accounted for as is shown in fig. 37. For amplitudes of 0.5, 1.0 and 2.0

degrees, the IV-TSD model very nicely corrects the inviscid shock pulse signature as well as the

post-shock pressures.

NACA 0012. This case involves a 12 percent thick symmetrical airfoil tested with free

transition for sizable mean angles and oscillation amplitudes as well as cases with constant pitch

rate ramping motions to high angles, ref. 18. Results for the latter cases are shown in ref. 113

and demonstrate that the TSD code yields surprisingly good lift coefficient estimates for these

transient ramping motions up to angles near stall, cL- 8-10% Figure 38 presents results for

the former cases, with total lift and pitching moment coefficients plotted versus pitch angle.

The first three cases are for oscillations of 2.5 and 5 degrees about non-zero mean angles while

the last case is for oscillations of 2.5 degrees about a zero mean angle. Agreement for the lift

coefficients varies from good to very good whereas the moment coefficients for the first three

cases show a systematic difference with experiments due to underprediction of pressures near

the leading edge suction peak in pressure. The characteristic shape of the Cm - c_curves for the

first three cases is due to a large second harmonic contribution. In contrast, the shape in the

fourth case is due to an increased third harmonic component. Viscous results from the IV-TSD

model are shown for the first and fourth cases. In the first case, viscous effects produce what

appears to be a decreased agreement with experiment. The second and third cases were not

amenable to the "direct" IV-TSD model described above since they involve incipient separation.

Such cases require an "inverse" boundary layer method to handle mildly separated flows.

Parametric Studies. A number of parametric studies of transonic 2-D unsteady

aerodynamics have been published. Bland and Edwards 114 investigated the effects of airfoil
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shapefor the 10.6percentthick NACA64A006airfoil and the 8.9 percentthick MBBA-3

airfoil. The latter is a supercriticalairfoil with significantaft loading. Figure 39 shows the

steadypressuredistributionson theseairfoils for a rangeof Machnumbersand fig. 40 shows

the unsteadypressuremagnitudeand phaseangledue to pitchingfor thesameMachnumbersfor

k = 0.15. It wasobservedthat the frequencyresponsefunctionsof thesetwo airfoilswere very

smilarwhen a Machnumbershift of 0.01wasusedto accountfor the thicknessdifference.

Figure41 showsthis comparisonfor airfoil pitching. Usingthis Mach numbershift, it was

shown that the two airfoils exhibited similar transonic flutter characteristics for structural

dynamicparametersrepresentativeof a swept-backwing section.

Theeffectof amplitudeupontransonicunsteadyaerodynamicswasalso studied114. Figure

42 showspressuredistributionsdue to pitchingfor the NACA64A010Aairfoil at M ---0.7 and

k = 0.15. For oscillationamplitudesfrom 0.25 to 2.0° normalizedpressuresaheadof and

behindthe shockare littleaffectedby varyingamplitudewhile the shockpulse is smearedout

with increasingamplitude.Note, however,that the areaUnderthe shockpulseremainsnearly

constant, lendingfurthercredibilityto the use of locally linear analysismethods. HowlettllO

also investigatedamplitudeeffectswith his interactiveviscousboundary-layermethodand

foundno significantnonlineareffectfor a moderatetransoniccase. Figure43 showslift due to

pitch for the NACA64A010Aairfoilat M = 0.796 for 0.1 and 4.0 deg. pitchingamplitude.

Batina108 investigatedthe effectsof airfoilshape,thicknessand angle-of-attackusingthe

XTRAN2Lcode. As a reference,fig. 44 givesthe linearCrn_frequencyresponsefunctionat M =

0.80 (linearizedaerodynamicsand flat plate airfoil). Shapeeffectswere investigatedusing

three10 percentthick airfoils;the NACA0010, the NACA64A010and a parabolicarc airfoil.

Figure45 showssteadypressuresfor M = 0.76,0.78and 0.80. Note the formationof shocks

nearthe locationsof maximumthicknessesat 30, 40 and50 percentchord. Figure46 givesthe

Cm_frequencyresponsesfor thesecases. Comparingfigs. 44 and46 two transonicfeaturesare

apparent. First,the developmentof nonzerovaluesfor Re (Cm_)at k = 0 with increasingMach

numberreflectsthe aft shiftof the steadycenterof pressurefor the NACA64A010and

parabolicarc airfoils. Secondly,the "wave"feature,seen most prominentlyin both the real and

imaginaryresponsesneark = 0.6 for M = 0.78, is novel. It is apparentlyindependentof

airfoilshapeandoccursat lowerreducedfrequencyfor higherMachnumber.

Reference108also studiedairfoilthicknesseffects. In steadyflow,we havea transonic

similarly _ule83v_herebysimilar airfoils with equal similarity parameters

(
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1 - M 2
Z = (68)

[8 (y* + 1)M2] 2/3

_'......... ' -^^'^_ pressure coefficienis

C [(y + 1)M212n
P = const. ( 6 9 )

_2/3

Figure 47 shows such scaled steady pressures at three similarity scaled Mach numbers for the

NACA 0008, NACA 0010 and NACA 0012 airfoils. The similarily parameter values %i --

1.4749, 1.3270 and 1.1851 lead to, for example, Mi = 0.76, 0.78 and 0.80 for the NACA

0010 airfoil. The corresponding Cm_ frequency responses are given in fig. 48. Although no

similarity rule is available for the unsteady case, it is interesting to note that, for low and high

frequencies, these scaled airfoils behave quite similarly. In contrast, the wave feature which

will be identified with "aerodynamic resonance" below does not scale according to eq. (68).

Reference 1 points out that such resonances are related to the shock motion types identified by

Tijdeman. Figure 49 shows Cm_ frequency responses for the NACA 64A006 airfoil for the two

Mach numbers at which type B and C shock motions have been calculated (fig. 19) for the

frequencies denoted by the symbols. The type B motion corresponds to the resonance frequency

of the aerodynamic resonance feature (the maximum amplitude of Im (CmS) for this case) at

M = 0.854 whereas the type C shock motion frequency is below the M = 0.822 resonance

frequency.

Finally, Edwards et al.115 present parameter studies of 2-D transonic flutter

characteristics. The effects of airfoil shape and angle-of-attack are noted and detailed results

for a variety of structural dynamic integration methods are shown. Effects of motion amplitude

and time step size are also noted.

Shock Generated Entropy

Thus far, transonic unsteady aerodynamic calculations have been presented which
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demonstratethecapabilityof theTSD potentialequationto capturenonlinearshockwavesand to

predict trendsfor transonicunsteadyairloads. An evaluationof figures 29 - 38 indicatesthat

suchcomputationsarenot accurateenoughto displacelineartheory. Augmentationsto the basic

TSD equationand/orresortingto higherequationlevelsarecalled for. In this sectiona

significantaugmentationto the TSDequationis described.

The conservativefull potentialand transonicsmalldisturbancepotentialequationsare

derivedwith the assumptionsthat the flow is irrotationaland isentropic. While it is recognized

that entropyis generatedwithinshock-waves,the use of potentialtheoriesto studytransonic

flowswithweakshockshasprogressedassumingthat this entropygenerationwasa higher

order effect. It is now understoodthatdisregardingthis effect can leadto seriousdisagreement

with more exactsolutions for physicallyinterestingsituations.

A commonapproximationin formulatingthe full potentialequationsis to impose

conservationof massand energywhile satisfyingthe isentropicand irrotationality

conditions116. Reference116showsthat the shockjump conditionsfor sucha "conservative

potential"equationdeviatefromthe Rankine-Hugoniotshockconditionsas the Machnumber

aheadof the shockincreases. In ref. 116,the implicationsof this effectwere studiedby

calculatingClversus(zfor a rangeof Machnumbers. It wasknown117that the symmetricNACA

0012 airfoil at o_-- 0° exhibitedmultiplesolutionsfor 0.82 < M < 0.85. Figure 50 showsthat

such rangesof multipleslutionscan be foundfor all Machnumbersfor sufficientlylarge angles

of-attack. More importantlyfor transonicaeroelasticity,it is concludedthat well before c_

reaches values at which multiple solutions occur, the lift-curve slope, cl_, can become

unphysically large.

Williams et al.118 have investigated the effect of nonunique solutions of the unsteady TSD

equation. Figure 51118 gives three different calculations of lift coefficient versus (z for the

NACA 0012 airfoil at M = 0.85. Figure 51(a) gives the upper surface pressure distributions

for the three multiple solutions indicated by A, B, and C in fig. 51(b). Solution B is a

symmetric nonlifting solution while the other two are lifting solutions. Figure 51(b) gives the

lift coefficient versus angle-of-attack for 1.) Quasi-steady conditons, k = 0, and pitching

oscillations for 2.) k = 0.01 and 3.) k = 0.05. Solution B is not a stable solution and diverges

with an extremely large time constant to either A or C depending upon initial conditions. At k =

0.05 the solution oscillates about the positive lifting solution. While the average lift curve

slope is not unreasonable the solution must be regarded as anomalous. In contrast, the solution

for k = 0.01 exhibits a hysteresis loop, jumping between the two stable steady solutions. The
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large phase lage implied by this slution is unphysical and caution must be exercised against such

calculations.

Fuglsang and Williams 119 implemented a nonisentropic formulation for the 2-D TSD

equation. In the 2-D form of eq. (30) the strearnwise flux may be written as

..2. 1_ 2
f=(i-M )U - X--t_U (70)

z_

where u = _x. The coefficient B may be chosen in a variety of ways but should be asymptotic to

(-f + 1) as M approaches unity. Reference 119 replaced eq. (70) with

, V 2

f = (y + 1)M2R (VV - -_-..) ( 7 1 )

where

u
V=

1 + u/(1 +R)

2(1 - M2) '

R 2ta _ - 1

v = V(u ) -
2R

and asterisked quantities refer to sonic conditions. This new flux is identical to that of eq. (70)

to O(u 2) when u is small. The new form is derived from a formal asymptotic expansion of the

Euler equations, including the effect of shock-generated entropy. A modified pressure

coefficient to account for this entropy and a modified wake boundary condition to account for

entropy convection complete the nonisentropic modeling. The pressure coefficient is modeled as

= +C
Cp Cp_ p, ( 7 2 )
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where

c = -2 (_ - _,) (73)

is the linear isentropic term and Cps is the correction due to the entropy jump

Cps =

2(s- soo)/cv

Y (Y + 1)M 2

(74)

The entropy jump is evaluated using the computed velocity upstream of the shock and the

Rankine-Hugoniot normal shock jump condition (

A__S.S= In [r"r( e-r )]
Cv _r-1

(75)

where

e = (7 + 1)/(y - 1)

_ _ 2_2
r = u2/ul = R/u 1 C

= 1 + q_x - Us

The wake boundary condition, eq. (38), is modified to account for the entropy as

1

[_x+¢,1 = _"[Cp] (76)

The entropy is assumed to be convected down the wake at the freestream speed leading to
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o_ + _.._..
O_[Cp] 0x [Cp] = 0 (7 7)

_

Figure 52 shows isentropic and nonisentropic results compared to Euler and full potential

results for M -- 0.84 and a -- 0.25. The nonisentropic results are very similar to the Euler

results. No mulitple solution conditions have been observed with the nonisentropic model and

values of lift-curve slope are reasonable. Also, low frequency unsteady calculations do not

exhibit the hysteresis effect shown in fig. 51(b) 119.

TSD Potential Equation, 3-D

The success of the ADI solution algorithm in enabling efficient 2-D calculations led to its

extension to 3-D in the XTRAN3S28,29 code. In this code, the physical grid lines in the x, y

plane conform to the wing planform and the grid is extended in regions off of the wing planform

using a shearing transformation to map onto a rectangular computational domain:

_=_(x,y), ri=y, ;=z, '_=t (78)

In computational space eq. (30) becomes 120

C M 2 _ 1 ,3 M 2 + F_2x 2 2 2 2G_y (_ _).q + G(_2
_[_.,=+ 2,_]=_-[(1- )_x,g ,g+G_,,g+ n

+-_Y (_y _b{+ q_vl)+ H_y qb (_y dO{+ _)rl)]+ -__ [&_x(_y qb_+ qbn)+Hd#{ (_y _b{+ Cn)1

(79)

The time-accurate solution of eq. (79) via the ADI algorithm is summarized by Borland and

Rizzetta29:
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- sweep:

BS_ (q_-if')= D= [an (-_--) + 0_*_1
At ",

<I
n

+2G s(Snq_ n) D ( _q_)+511 rl
(C_ On) + n + X n yn (80a)

Ti - sweep:

BS+-_(; - _'.) 1a-T- =2 (c5;- c5 ¢)
(--_ ('-- n

+ G s (Snc_n) D n (Sg_ - 5gq) ) (80b) (

- sweep:

_)n+l - 2dn
cA (-

At 2

+ (_n-1 6- ,n+l ;) C ((_n+l
) + BS_ (* " = _. 5 - ¢")

At
(8Oc)

: 6._

where 8_, 8n, _ are second-order accurate central difference operators, 5_ is a first-order

backward difference operator, D_ is a mixed-difference operator based on the

sign of (an + 2b _) and Drl is a mixed-difference operator based on the sign of 2 G s (5 n _n).

Thus numerical stability is maintained using Murman-Cole differencing. Expressions for a, b,

X and Y are given in ref. 29. This algorithm is used to advance the solution for _ from time t to

time t + at (i.e. _)n to _n+l). All of the terms contributing to the streamwise portion of the

equation are treated implicitly, as well as the second difference 5rl (c5n$) and cS_;t;(1). The

remaining cross terms contained in the expressions for X and Y are handled in an explicit

manner. Because of this there is an inherent time step limitation for stability of the 3-D

method not present for fully implicit methods such as the 2-D ADI method of ref. 14.

A compar!son of calculations from the XTRAN3S code with experimental data from a

rectangular supercritical wing oscillated in pitch is given in ref. 109. Flgure 53(a) shows

steady pressures for two span stations at M = 0.7 and c_ = 2°. For this low transonic condition,

C
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the agreement with experiment is good except near the leading edge. The unsteady results in fig.

53(b) are in good agreement with experiment over most of the chord. Inboard, there is an

improvement in the prediction of the leading edge suction peak over the linear RHOIV result.

Outboard, there is evidence of viscous effects in the phase angle in the aft cove region.

Modified Grid Transformation. The semi-implicit ADI algorithm used in the XTRAN3S code

required increasingly small time steps to maintain stability as wing sweep and/or taper were

increased. Guruswamy and Goorjian121 modified the original grid shearing transformation, eq.

(20), which resulted in highly skewed outer grid boundaries for such cases. The modified

transformation maps from a rectangular physicai domain onto a rectangular computational

domain while maintaining the alignment of the grid with the wing planform. Reference 120

describes the details of a similar transformation method. In regions upstream and downstream

of the leading- and trailing-edges and their extensions, the grid spacing is given by a cubic

shearing function, which for the. upstream region is

.3 I, .... " (81)
=x_+A 1iu+A31 u, iu= I p

The coefficients A1 and A3 are selected120 to enforce smooth grid metrics for the grid cells

adjacent to the wing. Outboard of the wingtip the leading and trailing edges are extended using

similar cubic functions that match the leading and trailing edge slopes at the tip and intersect

the far spanwise boundary perpendicularly. Various combinations of spanwise grid point

spacing have been studied. Both uniform and cosine-distributions on the lifting surface and

uniform and stretched distributions outboard of the wingtip have been used. Figure 54 indicates

the grid distribution for the case studied in ref. 120, the RAE tailplane model which was tested

for pitching oscillations. It has a leading edge sweep angle of 50.2 deg., a taper ratio of 0.27 and

a 10 percent thick NACA 64A010 section profile. Figure 55 shows comparisons of steady

pressures for M = 0.80. The agreement is reasonable for the inboard stations. However, the

agreement deteriorates at the outboard stations and the pressure expansion over the forward

portion of the wing is generally underpredicted. The unsteady pressures for this case with k =

0.490, fig. 56,. show good agreement between calculated and measured trends and again

deteriorating agreement outboard.

The grids used for the calculations shown in figs. 53-56 contained 60 x 20 x 40 points in
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the x, y and z directions for a total of 48,000 points. This is considered to be a medium-to-

coarse grid and 5-6 times this number of grid points appear to be required to insure accurate

calculations for a single lifting surface. In terms of computational efficiency, ref. 29 indicates

a machine speed of 83 p.s. per grid point per time step for a CDC 7600 computer.

Shock-Generated Entropy. Gibbons et a1.122 modified the XTRAN3S code to account for

shock-generated entropy in a manner similar to ref. 119. The streamwise flux, eq. (31), is

replaced by

fl = (Y+ 1)M2R (VV* - V2/2) + Gq_y2 (82)

and the pressure and wake condition modified as in eqs. 72-77. Reference 122 indicates that

for a 3-D rectangular wing multiple solutions occur for aspect ratios greater than 24. For

more reasonable aspect ratios, unacceptable solutions can be calculated if entropy generation is

not taken into account. Figure 57 shows such a case wherein the unmodified code predicts a lift-

curve slope twice as large as the modified code which is in agreement with an independent Euler

equation calculation. Reference 122 also discusses implementation of Engquist-Osher monotone

differencing in the XTRAN3S code. This resulted in improvement in calculated pressures near

shocks. Figures 58 and 59 show original and modified XTRAN3S steady and unsteady pressures

for the RAE tailplane model at M = 0.90 and k = 0.44. The entropy modifications result in 5-

10 percent chord fQrward shifts of the shock and shock pulse in the outboard wing region.

Treatment of Realistic Confiqurations

All results presented thus far have dealt with unsteady aerodynamics for isolated lifting

surfaces. In order to realize necessary improvements over existing aeroelastic analysis

methods, computational methods are required to provide reliable predictions for complex

configurations.

(

Multiple Liflina Surface Inlerferen_. - Batina123 extended the ADI algorithm of the

XTRAN3S code to allow two lifting surfaces. Figure 60 illustrates a case of canard-wing

interference in which unsteady loads are induced on the wing by the oscillating canard. This

effect is obviously a function of the separation distance between the surfaces, the Mach number

and the frequency.



49

Wing-Fuselage Interferenc;e - Batina124, 85 has also implemented modifications to the TSD

equation to treat wing-fuselage interference. For a body at angle of attack (zb and at yaw angle

13b,the exact flow tangency boundary condition may be written as 124

N t + N x (1 + ¢)x) + Ny (¢_y + 13b) + N z (¢_z + %) = 0 (83)

where N(x, y, z, t) = 0 defines the body surface. Computationally, bodies are modeled by

applying simplified boundary conditons on a prismatic surface rather than on the true surface

as shown in fig. 61. This method is consistent with the small-disturbance approximation and

treats bodies with sufficient accuracy to obtain the correct global effect on the flow field without

the use of special grids or complicated coordinate transformations. The appropriate boundary

conditons imposed on the computational surface are

Upstream face: _x = Vm]et " 1 ( 8 4 a)

Downstream face: Cx = Vexit " 1 ( 8 4 b)

N x N t

Left/right faces: (_y = C t [._-.- +._---] - Ca_ b (84c)
Y Y

Top/bottom faces:
N N

(_Z = - Ct [ x + tN "N-"] (84d)
Z Z

where Vinlet and Vexit are inlet and exit flow velocities, respectively, specified in the case of a

nacelle. The parameters Ct and Ca are thickness and angle-of-attack corrections derived from

slender body theory to account for the differences between the true and computational body

surfaces.

Figure 6;)124 gives results from these modifications to the XTRAN3S code for the RAE wing-

fuselage tested at M = 0.90 and c_= 1o. Results for the wing-alone case, not shown, indicate

that fuselage effects are similar to the results shown for M = 0.91. Figure 63 shows the
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calculated interference effect for this configuration for an assumed wing bending mode. The

interference effect on the integrated generalized force, important for aeroelastic analysis is

approximately 5 percent of the total.

A.Dproximate-Fa(;:t0riz_li0n of the TSD Equation

The numerical stability restrictions of the ADI solution method for the 3-D TSD equation

(29) have limited i.ts applications for transonic unsteady calculations. An alternative solution

algorithm84, termed an approximate-factorization (AF) method, has shown much improved

stability characteristics. This AF method involves a local time linearization procedure coupled

with a Newton iteration technique which is based upon the work of Shankar et a1.125 who applied

the method to the full potential equation. It is formulated by first approximating the time

derivative terms ((l)tt and ¢xt) in eq. (30) by second-order accurate formulae, followed by the

substitution of _ (1)*= + A¢ and the neglect of squares of derivatives of ,5(1). In this method, (I)* is

the current estimate of (I)n+l wfiich will be converged to the true potential _n+l thus driving ,5(I)

to zero. Performing these operations and summing terms results in

2A 3B _) •
Ad_ + _2 At A_x - _xx (E Ad_x + 2F (_x AC_x + 2G_ A(_y)

° * _) 2_* - 5_ n + 4(1)n] - (bn'2

- c3y (AOy + Hqbx AOy + HOy AOx)_ _z (Aoz) =- A
At 2

2At +-_-x(E_x+F_x +G_y)
a • a (_)

(85)

(

The right hand side is simply the TSD equation which may be evaluated-using known potentials
#

(I)*, #n #n-l, and _n-2. Transforming to computational coordinates, rewriting eq. (85) in

conservation form and approximately factoring the left hand side into a triple product of

operators yields
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, a [1 •
+ -- (gy_ + (_vqb_ + -- (87g)

Equation (86) is in the form of Newton's method for the solution of the nonlinear system of

equations

R (¢.+1) = 0 ( 8 8 )

which is given by

or

(aR) (On+lRO n+I)=R(o')+ -- . -_*) =0

OR .1-1
¢n+I = 0"- [(-5_-)¢= ¢ R (¢*)

(89)

(90)

By iteratively solving (90), Aq_will approach zero so that _n+l = _*. In general, only one or

two iterations are required to achieve acceptable accuracy since the Newton iteration process is

quadratically convergent. Equation (86) is solved using three sweeps through the grid by

sequentially applying the operators L_, L-q, and _ as

(

C

_,-sweep: L A¢=-R (91a)
c,

(n-sweep: L AO=A0
9 1 b )
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- sweep: Lr.*/k_ = ,_ ( 91 c )

Central difference formulas are employed for all of the derivatives on the left-hand side of

eqs. (91) except for the second term in the _ operator (from the _xt term) which is backward

differenced to maintain stability and the third term in the L_ operator which is split into

streamwise and spanwise components. The resulting terms are centrally differenced at subsonic

points and the streamwise terms are upwind-biased at supersonic points using the Murman-

Cole type dependent mixed difference operator. The terms on the right hand side of the G-sweep

are also approximated using central-difference operators except for the (l)xt term which is

backward differenced and for terms in the streamwise directior, which are upwind biased at

supersonic points. Since the 4, L.q, and Lr.,operators only contain derivatives in their

respective coordinate directions, all three sweeps may be vectorized. Finally, ref. 126

describes two additional improvements to the algorithm: second-order accurate supersonic

differencing for improved accuracy and Engquist-Osher monotonedifferencing which again

enhances stability.

Figures 64 and 65, from ref. 125, compare results from the XTRAN3S ADI code and the AF

algorithm for the F-5 wing model. Figure 64 compares steady pressures at M ---0.9 and (z -- 0°

while fig. 65 compares unsteady upper surface pressures for k = 0.137. Results from the two

algorithms agree, as they should, and they also are in very good agreement with experiment.

The AF algorithm is also capable of calculating supersonic freestream conditons. Figure 66

gives an example of unsteady lower surface pressures for the F-5 model at M = 1.1 showing

good comparison with experiment for this relatively low supersonic case.

The AF algorithm is implemented in a computer code termed CAP-TSD (Computational

Aeroelasticity Program - Transonic Small Disturbance) developed at NASA Langley Research

Center84. The code permits the aeroelastic analysis of complete aircraft through the modeling

of multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers,

pylons, fuselage, stores and nacelles. Reference 84 presents results for five configurations

illustrating this capability. Figure 67 indicates the modeling of a General Dynamics F-16C

aircraft model using four lifting surface and two bodies. Figure 68 compares calculated and

measured steady pressures for this model at M = 0.9 and c_ = 2.38% The agreement is

considered very good. In fig. 69, calculated unsteady pressures for thecomplete aircraft and for
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the wing-aloneare comparedfor the caseof rigid pitchingoscillationsfor k ,,,0.1. There is a

generallackof unsteadyexperimentaldata for complexconfigurationswith whichto validate

such computatlons. The grid used for these calculations contained 324,000 points. The

calculations required 0.88 CPU seconds per time step or 2.7 p.s. per grid point per time step on

the CDC VPS-32 computer. Thirteen million words of memory was required.

A primary application of unsteady aerodynamics for lifting surfaces is the calculation of

aeroelastic response; that is, the response of elastic structures interacting with the

aerodynamic loading. The integrity of the structure must be insured under all possible

operating conditions and thus the prediction of instability, or flutter, boundaries is required.

Reference 127 describes such calculations for a proposed AGARD standard aeroelastic flutter

model configuration. This 45 ° sweptback wing with a taper ratio of 0.66 is shown in fig. 70. A

finite element structural dynamic model provides normal vibration mode shapes, frequencies

and generalized masses required for a flutter analysis. These uncoupled modal equations of

motion are implemented in the CAP-TSD code and time-accurate transient response calculations

obtained 127.

Figure 71 shows the mode shapes of the four lowest frequency modes used in the analysis.

Transient responses for values of dynamic pressure below and above the flutter boundary are

processed to obtain the frequency and damping of the aerodynamically coupled modal responses.

Figure 72 compares experimental and computed flutter boundaries for Mach numbers from

0.338 to 1.141. Figure 72(a) shows the flutter speed index, U/b_ ,lit, and fig. 72(b) the

frequency ratio, _/_, of the flutter mode, where e)_ is the first torsion mode wind-off

frequency. For this 4 percent thick wing, transonic effects are delayed to high subsonic Mach

numbers and linear theory results from both CAP-TSD and a kernel function program, are in

very good agreement with experiment up to M = 0.98. The three nonlinear CAP-TSD subsonic

flutter calculations better agree with experiment than the linear theory, particularly for the

change in slope of the flutter boundary near M = 0.95. Note the excellent prediction of the

supersonic "backside" of the flutter dip.

Unsteady Potential Equation

The length of the previous sections dealing with solution methods and modifications for the

unsteady TSp potential equation reflects the large amount of effort which has been expended

upon this equation level. Fewer results are available for the higher equa'tion levels. However,

as work on the TSD equation has obviously matured, an acceleration of work on the potential
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equation, and the Euler and Navier-Stokes equations is evident. In this and the remaining

sections, key algorithms and results for these fluid dynamic models will be summarized. The

major issues to be addressed involve computational grids and increased problem size. All of the

fluid dynamic flow models above the TSD equation require solutions to be obtained upon the

actual body surface, which is usually accomplished with a body conforming grid. For problems

involving body motion, such grids probably need to be moved along wiih ihe body.

The 2-D unsteady potential equation, eq. (23), is solved in ref. 82 using an approximate

factorization algorithm. The time derivative of density is linearized about previous time levels

such that conservation form is maintained and the resulting equation becomes

L_ L_ A_ = F ( 9 2 )

where

h2

h2

L =[I+hWna -78g(pA 3)n8]

h - - _n-1)F = (O"- O"1) + .E_ (O"- 20 "1 + • "2) + -- (p"
13" 13"

+ h ._ (U n-1 8 t + W n'l a_) (O n- • n'l) + hAlY' [a_,(.._--)" + a
(pW) n- F ]

The terms A1 and A3 are metric terms, 5_ and 5r_are central difference operators and

AO = • n+l - • n,. h = A17, P = p/j, _ = p2-'t/j

Reference 82 uses the concept of flux-biasing 128 to stabilize the numerical scheme. The
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spatial terms on the right hand side of eq. (92) are centrally differenced about node (i, j) to

give

(93a)

_ (_W)i.j = (pW)ij+,/z- ( w)i.j-m

The biased density in the _ direction is defined as

~ 1 [Pq- (Pq)'i+l/2.j + (Pq)'i-1/2.j ]
Pi+l/2,j - qi+l/2,j

(93b)

where

(pq)=pq-p q q>q

m

0 q_<q

This flux biasing has the effect of introducing artificial viscosity in supersonic regions which is

necessary to capture shocks. Although it is generally necessary to bias the density in both

computational directions, ref. 82 found that biasing only the g direction was satisfactory.

Reference 128 explores the connections between this flux biasing and the Murman-Cole and

Engquist-Osher differencing schemes.

The flux-biasing solution method has the following desirable features: (a) it accurately

tracks sonic conditons and requires no empirical constants to specify the amount of artificial

viscosity, (b) it produces no velocity overshoots at shock waves, allowing for larger time steps

for unsteady calculations, (c) it produces well-defined, monotone shock profiles with a

maximum two point transition between upstream and downstream states, and (d) it dissipates

expansion sl_ock waves, ruling out solutions with such nonphysical characteristics. Shankar et

al. 13o have also used flux-biased differencing in unsteady potential equation calculations.
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Reference82 alsopresentsanentropycorrectionmethodto accountfor shockgenerated

entropy. Thecorrectionconsistsof replacingthe isentropicdensity by a nonisentropicdensity

-As/R ( 8 4 )
p = pie

where the entropy jump As is a function of the Mach number normal to the shock. The

nonisentropic pressure coefficient is given by

2 [(pie-AS/g).[C_ = .---r-_ - 1]

v _M z

IQ¢;_
_1

and, as for the TSD equation nonisentropic modifications, the entropy jump is convected along

the wake downstream of the trailing edge.

Treatment of moving, body conforming grids has been handled in several different manners.

For 2-D airfoil sections and 3-D rigid wings, a single grid generated for a nominal body

orientation may be calculated. Rotations and translations of the entire grid81 can then be used to

track the motion of such bodies. An alternative is to calculate two grids for the extremes of body

motion and linearly interpolate grid point locations for intermediate body orientations 26.

Figure 7382 illustrates this latter method showing calculated grids for 0° and 45 ° and

interpolated grids for 15 deg. and 30 deg. The large amplitudes of this examples serve to

demonstrate the method. The double wake grid line for these potentialequation applicatons is

shown opened for clarity. For the potential equation, the location of this wake cut is important

since it defines the path taken by the convected vorticity. Reference 131 studies the effect of

using linear, quadratic and cubic curves to define the wake cut and shows a singificant effect

upon calculated lift results.

Figure 74, from ref. 82, shows isentropic and nonisentropic potential equation calculations

for the NACA 0012 airfoil oscillating in pitch at M = 0.755 and for ot(-_) = 0.016 ° + 2.51 ° sin

(k'r) where k = 0.814. The effects of the entropy corrections are to weaken the shock and move

it forward, in bettter agreement with the experimental data. At points in the cycle where the

shocks become strong, the measured pressures immediately behind the shocks show the effects

of boundary layer thickening, which is not included in these inviscid calculations. Reference

129 gives further examples of potential equation calculations for the AGARD Standard
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Configurations.

Euler and Navier-Stokes Equations

Since the Euler equations, (14), may be obtained from the Navier-Stokes equations by
^

deleting viscous terms such as Hv in eq. (1), solution algorithms for both equations sets may be

discussed together. Edwards and Thomas 1 survey methods which have been used.

The time-dependent Euler equations form a hyperbolic system of equations, and much of the

recent progress in algorithm development 132-137 has hinged upon the incorporation of the

signal propagation features of the differential equation into the numerical algorithm. There are

several methods of incorporating this information into a difference scheme, for example flux-

vector-splitting or flux- difference-splitting, and an excellent review of the current

developments in the field is given by Roe in Ref. 138. The advantages of incorporating an

upwind-biased discretization into a numerical algorithm are twofold: (1) the scheme becomes

naturally dissipative so that no adjustable constants need to be fine-tuned to a particular

application and (2) improved implicit schemes can be devised for more efficient solution to

both steady and time-dependent problems. Both of these advantages offset the disadvantage that

approximately twice as many operations per time step are required to implement an upwind

scheme as opposed to a central difference scheme.

Most of the calculations made to date with upwind difference schemes, especially for

airfoils/wings, have been steady-state applications, for which comparable accuracy can be

obtained by central difference methods with added artificial viscosity. The advantages of upwind

differencing should be more significant for time-dependent problems, however, where the

ability to treat rapid movement of flows with shocks is required. Roe 138 gives several

examples of shock-propagation computations in two-dimensions which demonstrate clearly the

advantages of a characteristic-based scheme. Viscous effects can also be readily introduced into

upwind difference schemes developed for the Euler equations by central differencing the shear

stress/heat transfer terms139,140.

The time-accurate computations made by Steger and Bailey25 and (_hyu et ai.26,27 used a

spatially-split approximate-factorization (ADI) scheme, which is unconditionally stable in two

dimensions but at most conditionally stable in three dimensions. Alternate factorizations are

possible with" the incorporation of an upwind difference discretization in one or more coordinate

directions which can lead to unconditionally stable 3-D algorithms 132. A two-factor eigenvalue

split scheme for the Euler equations has an increased stability limit and fewer operations than
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the spatially-split scheme, although the operations are not completely vectorizable. Belk42

computed steady and time-dependent inviscid flows for the NASA RSW model with such an

algorithm in combination with a blocked-grid strategy. Ying et a1.142 used upwind differences

in a single coordinate direction and constructed a two-factor unconditionally stable algorithm

for which thin-layer viscous effects are readily incorporated. Applications of the thin-layer

Navier-Stokes equations to the high-angle-of-attack unsteady flow over a hemisphere-cylinder

are made 142. Several of these alternate factorizations are investigated in the context of

efficient algorithms for three-dimensional steady-state problems by Anderson et a1.143,144.

The use of multigrid techniques to accelerate convergence to the steady-state is becoming

widespread in the aerodynamic community. These techniques can also be used for time-

dependent flows. For instance, multigrid techniques could be used to efficiently solve the large

banded matrix equations arising from implicit time discretizations, the solution of which is

generally approximated through relaxation and/or factorization methods. Jesperson145 has

demonstrated a time-accurate multiple grid procedure which was used to overcome the small

timestep limitation of an explicit scheme. With the growing memory of today's computers (the

Numerical Aerodynamic Simulator has 256 million words of memory) it becomes feasible to

solve the banded matrices by direct Gaussian elimination, rather than by approximate

techniques. The structure of future implicit algorithms for both steady and time-dependent

problems will likely involve a multiple grid algorithm with direct elimination techniques used

on the coarser grid levels.

Anderson et a1.81 implement the solution to Euler equations for a moving grid, eq. (14),

using flux vector splitting with upwind differencing. An iterative Newton linearization is used

to advance the solution in time similarly to eqs. (88) - (89). That is, eq. (1) is reformulated

as

AA

L(Q n÷l) = 0 ( 9 6 )

where the form of the operator is

A A

At
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[52F + + 8 F" =
r., +Srt +5_G'+5-H++_ _ j 0 (97)

If (I) -- 0, the scheme is first order accurate in time while if _ = 1, the scheme is temporally

second order accurate. Conditions required for the split flux terms in eq. (97) are given in ref.

81. Equation (96) is a nonlinear equation which can be solved iteratively by Newton

linearization

A

aL (_l+l _1) :_ L(QI ) (98)

A A A A

where I is a sequence of iterates and at convergence, QI+I _ QI=O, QI = Qn+l. A spatially-split

approximate factorization scheme is used to solve (90) in three sweeps in each coordinate

direction

A, A A

[(I + 2_) + AtS__ + + AtS_A-]AQ =- AtE(e l)

.A 4.A A ** A,

[(I + _) + At$ B + + AtS'B-]AQ = (I + _)AQ

i_'N- _. A**[(I+ _) + At8 + AtS+_]A@ = (I + -_)AQq

Ql+l _- Q1 + AQI

A A A A A A

where A±, B±, C+ correspond to Jacobean matrices of F±, G±, H± respectively.

Figures 75 and 76 from ref. 81, show calculations for the pitching NACA0012 airfoil for

the same conditions as in figures 37(d) and (73). The computations were obtained on a 193 x

33 C-grid using a time step of 0.10. Figure 75 compares results from two alternative splitting

methods; flux vector splitting, FVS, and flux difference splitting, FDS. The comparison of both

of the euler equation results with experiment is very good except near the base of strong shocks.

Reference 146 presents the Euler equations in a formulation whereinthe fluid dynamic

equations are developed for a coordinate system rigidly attached to the translating and rotating
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body. Solutionsfor two-dimensionaloscillatingairfoil problemsare obtained using an implicit

approximatefactorizationmethodwith artificialdissipation. Results for the oscillating

NACA0012airfoilare shownin figs. 77 and78. A C-gridwith 128 x 64 cells was used for

thesecalculations. Comparingfigs. 38(d),76, and77 indicatesthat the two Eulerequation

resultsappearto beconvergedwhiletheTSDsolutionindicatesthe magnitudeto be expected.
from viscouseffects.

Reference146also presentsresultsfor unsteadylocallyconicalflow abouta sharp-edged

deltawing in supersonicflow for rollingoscillationabout zeroangleof attack. Figure79 shows

the spanwisepressuredistributionat four instantsduringa cycleof oscillationfor M -- 2 and k
.... _/I I -- t q_'7 Th,', fnrrn_tinn ¢_f th_ I_r4inr_ _r'ln_ ur_rt_v _nH it= minr_tinn nr_ _lAnrlv AvirtP.nt

as is the phase lag of the pressure loading.

The final example of Euler equation calculations to be presented is from the flux-vector

splitting scheme of ref. 81. Figures 8O and 81 show steady and unsteady pressures for the F-5

wing model oscillating in pitch. Figure 80 presents comparisons with experimental steady

pressures for Mach numbers from 0.90 to 1.328. Agreement is very goocl to excellent except

near the strong shock at M = 0.95. Unsteady pressure comparisons, fig. 81, for M = 0.95 and

1.32 show very good agreement in pressure levels. There are generally insufficient data to

resolve the shock pulses near the leading and trailing edges at M = 0.95. These calculations

were obtained on a 129 x 33 x 33 C-H mesh. A time step of 0.05 was used requiring

approximately 240 time steps per cycle of oscillation.

The retention of viscous terms leads back to the Navier-Stokes equations represented by eqs.

(1) - (13). The detailed viscous flow modeling of which this equation set is capable makes it

appropriate for the study of viscous dominated unsteady flows characterized in fig. 3 as type II

and type III. They may aso be used in the calibration of lower equation level flow models for

appropriate classes of unsteady fows such as type I attached flow.

Steger and Bailey25 provided an early computational demonstration of the use of CFD

methods in aeroelasticity. They studied a case of aileron buzz for the P-80 aircraft which had

been tested in a wind tunnel. Aileron buzz is a one-degree-of-freedom aeroelastic instability,

usually of limited amplitude, which may be encountered for transonic "flow conditions. They

implemented the Beam-Warming implicit Approximate Factorization (AF) solution algorithm,

using an algebraic eddy viscosity turbulence model. A novel treatment of the computational grid

was used to'follow the aileron motion with a conforming grid. A simple shearing transformation

in the coordinate normal to the aileron was used.
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Figure 982shows the limit amplitude "aileron buzz" oscillation which was calculated for M

= 0.82, Re = 20 x 106 and a = -1. The calculation was initiated with a 4 degree aileron offset.

This and other calculations successfully reproduced the experimental buzz boundary. The

computed reduced frequency was k = 0.38. The shock motion observed in the calculations was

type B, and type II intermittent fow separation is shown in ref. 25. The code wascapable of

being run in an inviscid mode (EE mode) and several such calculations were made. Below M --

0.84 the aileron exhibited damped oscillations of about k = 0.36 whereas divergent oscillations

(k -- 0.39) were calculated at M = 0.84. Hence the tendency to oscillate at a given frequency

derives from the inviscid flow equations while the viscosity apparently plays the key role of

limiting the amplitude of oscillation. These calculations were performed on a 76 x 42 grid and

required approximately 1.5 sec of'CDC 7600 computer time per time step or 460 I_S. pergrid

point per iteration. Nondimensional time steps of 0.005 - 0.01 were used (based on chord).

Chyu and his coworkers26,27 used this same method along with the grid interpolation

method described above to study the moderate shock case26 and the shock-induced separation

case27 for pitching oscillations of the NACA 64A010A airfoil shown in figs. 83 and 84.

Comparison of the interactive viscous-TSD (IV-TSD) results of fig. 35 with the Navier-Stokes

results of fig. 83 is instructive. The two sets of calculations are in very good agreement for this

type I flow condition. As for the type II - III flow condition shown in fig. 84, note t.hat the full

and thin-layer Navier-Stokes results show no significant differences except near the shock

where the difference is not large. Thus the thin-layer Navier-Stokes equation appear to be

viable for this class of unsteady flow problem. These calculations were obtained on a 139 x 49

C-grid using 2620 steps per cycle of oscillation and the time per step on the CRAY X-MP

computer was: full NS, 0.33 sec; TL-NS, 0.17 sec; EE, 0.17 sec, corresponding to 25 - 44

_sec. per grid point per time step.

Rumsey and Anderson78 describe an extension of the flux-vector split, approximate

factorization upwind scheme described in eqs. (g6) - (98) to the 2-D thin-layer Navier-

Stokes equations. This method is developed for body conforming moving grid systems and is

given in eqs. (1) - (13). Figure 85 gives their solution for the oscillating NACA 0012 airfoil

at M = 0.6 and k = 0.081. This case has already been presented for IV-TSD calculations in fig.

38(c) and for EE calculations in fig. 78. Figure 85 shows the effect of grid refinement

indicating little change in going from a 129 x 29 grid to a 257 x 97 grid. The EE and TL-NS

solutions appear to be quite similar while the TSD solution shows some differences for this high

lift case. This computational algorithm is highly vectorized for use on either the CDC CYBER
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205 or the CRAY 2 computers. Computational speed averages approximately 16 p.sec per grid

point per time step and the memory required in kilowords is about 0.2G0 x (meshsize).

(

Periodic Aerodynamic Oscillations

In the previous sections, algorithms and experimental results directed at moving or

oscillating lifting surfaces have been presented. There is an imp(_rtant class of experimentally

observed ....... "" " ....... '_"'"_ .... _"_;" _'.... is ,-,h_,-,,.,,,-,,-! over v"ry narrow ranges of testgll,_l.IG'dUy IIuWo YVIl_ll_lll I.#q{_ll_t_/l_,,,dllti.# IlVi¥ V I_jl,,,alq,#l Ivv v"

conditions for perfectly rigid bodies. These flows tend to be found in transition regions between

attached and separated flow conditons and are recognized as highly sensitive data which may be

used for the validation of computational methods 1.

In order to provide experimental data for validation of viscous flow CFD computer codes,

McDevitt et al. 43 conducted tests on a rigid 18 percent thick circular arc airfoil. Figure 86

illustrates the parameters of the experiment which was designed to encounter both trailing-

edge and shock-induced separations at high Reynolds numbers within the wind tunnel operating

limits. Over a narrow range of Mach number, 0.73 < M < 0.78, oscillatory flow separation was

observed, fig. 8745. McDevitt 44 states that the oscillations involve predominantly type C shock

motion with small regions of type A motion near the onset of the periodic oscillations, fig. 88.

The reduced frequency of the oscillations is k ,, 0.48 for c_ = 0 ° and varies little with angle-of-

attack.

Levy45 successfully computed such oscillations for this airfol using a Navier-Stokes flow

solver. Levy's code was amodification of the code of ref. 148 and used MacCormack's explicit

solution scheme with an algebraic eddy viscosity model. Levy modified the code to simulate the

contoured wind tunnel walls. Figure 89 shows steady computed Mach contours for Mach

numbers of 0.72 and 0.78, corresponding to trailing-edge and shock-induced separations,

respectively, and unsteady flow with oscillatory trailing-edge/shock-induced separation for M

= 0.754. The reduced frequency of the computed oscillations is 0.40, about 20 percent lower

than the measured frequency. Note particularly the lower surface Mach contours of the third

frame for M = 0.754. The few lines indicate the collapse of the supersonic region for this

portion of the cycle. Also note the dimpled nature of these Mach lines under the airfoil surface.

These features will be discussed in more detail below.

Subsequent tests on circular arc airfoils of thicknesses from 10 to 20 percent were

performed by Mabey 46, obtaining similar periodic oscillations. The Mach number range of the

oscillations increases with decreasing thickness as does the oscillation frequency, rema!ning in
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the range of 0.4 < k < 0.55 depending on thickness and wind tunnel wall condition. Mabey et

al. 47 and Levy48 give detailed comparisons of Navier-Stokes calculations with experiment for a

14 percent thick airfoil, reproducing qualitatively the details of the oscillatory flow.

These unsteady periodic flows encountered over limited ranges of Mach number and

triggered by oscillating trailing-edge/shock-induced boundary layer separation are just

recently coming within the range of computational meihods. The weakest link for this capability

is the uncertainty in the turbulence modeling of complex separated flows, since rapid progress

continues to be made in the development of improved algorithms and faster computers.

It is well known that separated flows depart strongly from equilibrium - type behavior, so

that at a minimum some account of the non-equilibrium "upstream history" effects should be

included in the computations. Some encouraging results along this line have been obtained by

LeBalleur149 with an integral boundary layer model and Johnson150 with an eddy-viscosity

Reynolds-shear stress closure model. Simpson151 recently reviewed calculation methods for

turbulent separated flows and (_oakley152 compared several methods for airfoil applications.

On the other hand, Levy45 was able to reproduce the unsteady periodic flow-behavior of the

18 percent circular-arc airfoil using an equilibrium two-layer algebraic model. The steady

flow at Mach numbers below the range of periodic flow, characterized by trailing-edge

separation, was predicted accurately. Levy demonstrated that the influence of the channel walls

had a Substantial impact on the comparisons with experiment, especially at Mach numbers away

from the design point. This effect was not considered in the earlier comparisons of Deiwert 148

with the experimental results. The steady flow at a Mach number above the range of periodic

flow, characterized by shock-induced separation, was not accurately predicted, as the

calculation demonstrated a normal shock pattern (fig. 89) with trailing-edge pressure

recovery, whereas the experiment indicated an oblique shock pattern and a constant pressure

region downstream of the shock.

In addition to Levy's calculations, the unsteady periodic behavior for the 18°percent

biconvex airfoil has also been computed by Steger153 and by LeBalleur149. Steger's calculation

was for an airfoil in free-air with an implicit Navier-Stokes code using the Baldwin-Lomax

algebraic model. The unsteady flow occurred at a higher Mach number (M = 0.783) than that of

Levy (M = 0.754), which can partly be attributed to the free-air boundary conditions. The

computed re(_uced frequency (0.41) was remarkably close to that of Levy (0.40) although both

are low in comparison to experiment (0.48). LeBalleur's recent calculations were also made in

free-air with a small disturbance potential method including an interacted two-equation
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integralviscousmodel. Steadyshock-inducedseparationwascomputedat M = 0.788and

unsteadyperiodicflowat M ---0.76. The reducedfrequency(0.34)was lowerthan eitherof the
two Navier-Stokessolutions.

Somecalculationshavebeen madeusingtheimplicitupwind-biasedNavier-Stokes

algorithmdescribedin ref. 154 usingan algebraicturbulencemodel. The tunnelwallswere

modeledand boundaryconditonsappropriatefor internalfiowwere used, i.e., the downstream

pressureand upstreamenthalpy,entropy,andflowdirectionwere specified. The results

indicatedunsteadyflowat a higherMachnumberthanLevy;steadytrailing-edgeseparation

occurredat M = 0.754and unsteadyperiodicflowat M ----0.78, althoughthe Machnumberfor

,,'_ne, nt ,,,,f thn ,,nef-'_mt'llnaee _t_e emneiti_p_ In whpth4ar mr nnt thA cliv_rgnnP.p, nf th_ tunne.I boundary

to account for boundary layer growth was included. Figure 90 shows Mach contours through one

half-cycle of oscillation (near maximum lift to minimum lift) indicating the forward

movement, disappearance, and subsequent formation near the trailing edge of the lower surface

shock. The reduced frequency of the type B unsteady motion was 0.406, in close agreement with

the calculations of both Levy (compare fig. 89) and Steger. The implicit calculations were made

with a time step of 0.01 and a computational time of 18 _s. per grid point per time step on the

CYBER 205 computer.

The calculation of the unsteady periodic flow boundaries for airfoils is a fruitful area for the

development and validation of computational methods. Experimental pressure data 43-47 over a

wide range of Reynolds number is available, although detailed boundary-layer measurements

are not. For the 18-percent biconvex experiments of McDevitt, a substantial hysteresis effect

in the unsteady flow boundary was found. This aspect has not been demonstrated with

computational methods as yet, but it would be expected, based on the above discussion, that

computational modeling as close as possible to that of the experimental conditions will be a

critical consideration. The most interesting behavior, and the most challenging from the

computational viewpoint, occurs in the transitional region from laminar to turbulent flow. In

the experiment of McDevitt 43, the Mach number range for the observed unsteady flow

diminished near a Reynolds number of 3 x 106 (fig. 87) and in the experiments of Mabey 47, it

disappeared completely in the range of Reynolds number from about 3 x 206 to 5 x 106. Scale

effects in either experiment were not significant once turbulent flow is fully established ahead

of the shoc.k.

The frequency of these oscillations is of interest in that the flow mechanism causing the

unsteadiness might be identified via the characteristic time constants of signal propagation
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within the various flow regions. Tijdeman3 noted an almost linear relation between the phase

lag of the shock motion and the airfoil motion for type A shock motion with a well-developed

shock (for pitch oscillations of the NLR 7301 airfoil). He related this to the signal propagation

time from the trailing-edge to the shock. Mabey 47, commenting on characteristic time

constants for the 14 percent circular arc airfoil periodic oscillations, notes that this reasoning

leads to reduced frequency parameters of 1.15 to 1.8, much higher than the observed

frequencies.

Three items mentioned above germane to this discussion are; Steger and Bailey's25 inviscid

EE calculations for the aileron buzz case, LeBalleur and Gerodrous-Lavigne's14g interacted

viscous-TSD code result for periodic oscillations, and Batina'sl08 demonstration of the

possibility of aerodynamic resonance with an inviscid TSD code. The occurrence of damped and

undamped oscillations observed for inviscid flows at nearly the same frequency as the

oscillations in viscous flow25 (k = 0.36-0.39) implies that the flow mechanism determining

the oscillation frequency derives from the dynamics of the inviscid flow region. Furthermore,

the results of Refs. 108 and 149 give impetus to studying this effect with a TSD code.

Accordingly, calculations were made with the XTRAN2L code of the aerodynamic response for the

18 percent thick circular arc airfoil due to trailing-edge 25 percent chord flap motions. The

nonisentropic modifications described in eqs. (70) - (77) were used to obtain solutions for

this strong-shock case. Figure 91 presents the resulting Cm,_ frequency response function for

Mach numbers of 0.66-0.74. There is a very marked development of an aerodynaic resonance

effect as Mach number increases. For M = 0.74 the airfoil resonance frequency is k = 0.32,

very cose to the computational conditions of ref. 149 for periodic oscillations (M = 0.76 and k

= 0.36).

CONCLt, JDIN(_ REMARK_

These lectures have summarized the status of computational unsteady aerodynamic for

lifting surfaces. The fluid dynamic flow models appropriate to the several levels of physical

models available have been presented along with details of solution algorithms. The subject has

been differentiated with respect to the difficulty of flow modeling and computational

requirements by distinguishing unsteady flow types as: I, attached flow; II, mixed attached and

separated flow; and III, separated flow.

For type I flows, computational methods have matured with a steady progression of improved
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techniquesfor flowsimulation.Significanteffortshavebeendevotedto understandingthe

effectsof equationallevel,computationalgrid, boundaryconditions,and interactiveviscous

modeling. Extensivecomparisonswithexperimentaldatasets havebeenmadewithsmall

disturbancepotential (both linearand transonic),potential,Euier and Navier-Stokesequation

solversfor two-dimensionalairfoilcasesand an understandingof the rangeof validityof the

variousmethodscanbe made. Lessextensivecomparisonsareavailablefor wingsand even

fewer comparisons for complex configurations involving interference effects. Experimental

unsteady data is needed for such configurations in order to validate computational methods which

can now treat complete aircraft for transonic flow conditions.

Progress in solution a ofithms fu, U,'_L_dUy ,=_,VUy,,d,l,,U has u_,, _,_,,,,,v,,,t _,,,,

decreases in required computer resources due to larger time steps allowed by more stable

solution algorithms. The treatment of body conforming grids for deforming aeroelastic vehicles

needs further attention to fully utilize the computational methods available.

Computational aeroelastic analysis has demonstrated capability for prediction of complete

transonic flutter boundaries for wings, including significant "transonic dip" features. Many

more transonic flutter calculations will be needed to fully validate computational methods for

transonic flutter predictions as critical features of these stability boundaries frequently

involve difficult flow conditions, such as type II mixed flow.
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Table 1. References giving comparisons of experimental and
two-dimensional unsteady aerodynamics

(References from Edwards and Thomas1)

calculated

NACA 64A006

NACA 64A010A

NACA 0012

TSD FP EE NS

6, 103", 88, 89, 87*

8n, 82, 138, 8L', Rg, 112",
87", 93, 97+, 114", 105"-108"

8R, 90% 109", 97+, 96+, 93

102, 116

117, 116, 79, 119

,119, 100+

5, 15

15, 30, 32

29, 28, 31

NLR 7301 89, 88, 107", 114% 97+ 117 16, 30, 32

MBB A-3 112", 89, 82, 138, 114% 63

Supercrttica] 154% 109", 65% 66
Atrfoils

Circular arc

At rfol 1 s
106% 107", 108"

19, !_

152, 44, !_P
43, 154

35, 37, 36, 40

Other 151 17, 42, 43,
148

* Interacted boundary layer model

+ Nonisentropic corrections

Table 2. References giving comparisons of experimental and calculated
three-dimensional unsteady aerodynamics and aeroelasticity

(References from Edwards and Thomas1)

T$O FP EE

r-5 P_del 115, 157, 137, 23 24. 136. 153, 102

NORA 16. 2Z 64, 26

-LANN |00. 156 45, 40, Z4, 76

RAE WIn9 A 64. 43, 26. [36

RSW ll6. 75 40, 66, 76, 25

RAE Tatlplane I14, 85% 15S, 98+

Other 118", 113% ll*. l] °' 64", 65*, 26". lO"

Nontsentropic corrections

* Aeroelasttc and flutter co_artsons

96, 34

IS, 33
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TABLE 6

Current Levels of Accuracy for Aeroelastic Analysis

Wing Flutter ~ 10%

Gust Response ~ 10%

Loads 5 - 10%

Control Effectiveness 25 - 50%

Control Hinge Moments 25 50%

Buffet Loads 20 30%



TABLE 7

COMPUTER RESOURCE REQUIREMENTS FOR FLUTTER BOUNDARY

(From Ref. 100)

WING/BODY/CANARD CONFIGURATION

10 MACH NUMBERS (40 CASES) PER ANALYSIS

OPS
OPS X (ITER)/(S-- _)TIME = (GRID PTS) X (GRID PTS X ITER)

FLOW REGION

1, MAYBE II

I, MAYBE II

I, II, MAYBE III

II, III

FLOW MODEL

TSD WITH 2-D
STRIP BOUNDARY
LAYER

POTENTIAL WITH 2-D
STRIP BOUNDARY LAYER

EULER WITH 2-D
STRIP BOUNDARY LAYER

NAVIER-STOKES

(RE = 108)

VPS-32

(100 MFLOPS)

30 HOURS

45 HOURS

65 HOURS

1611 HOURS

NAS

(250 M FLOPS)

12 HOURS

18 HOURS

26 HOURS

644 HOURS



TABLE 8

COMPUTER RESOURCE REQUIREMENTS TO DETERMINE FLUTTER

POINT AT A SPECIFIED MACH NUMBER

(From Ref. 100)

(4000 TIME STEPS PER FLUTTER POINT)

r,r_4mc1__nIt_8TI_

COMPLETE AIRCRAFT

COMPLETE AIRCRAFT

FI.r0W MODEL GRID POINTS

TSD 0.75M

FULL NAVIER-STOKES

(RE = 10 MILLION)

CPU HOURS

t'VPS-32_

2.3"

7.00M 77.8""

"BASF_..DON ACTUAL CASES

**ASSUMES COMPUTATIONAL SPEED OF 100 MFLOPS
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Fig. 11 Variation of two-dimensional indicical

load distribution with percent chord
for a Mach number equal to 0.8.
(Lomax et al., Ref. 97).
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and pitching-moment coefficients with
chord lengths traveled for several
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(Edwards, Ref. 98)
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LOunctler -_ TTIp missile ffralllnl eoge

\ \ ic=,,o, _,,=:,
LeoOlng loll % \ I

<=,,.,,u,,oc.\--_--7 //'" "':" o°o-:--"
$irole illnl -,_ _(I r] / I /-_orlzcntol '.011

.._--,...-_ _ -

CAP-TSD modeling of the General Dynamlcs
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Fig. 70 Planview of 45 ° sweptback flutter model wing.
(Cunningham et al., ref. 127)
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(Anderson" et al., Ref. 81)

Fig. 76

.4

.2

I--

0

-.2

-.4
-3

A

1 LEVEL0T-O.t
- - - 2 LEVELS DT,,,O. 1

- 3 LEVELS 0T-0.1
• EXPERIMENT

Ca) iZtt,

I , I . I

-I I 3

.04

.02

0

-.02

-.04 . _ . i .
-3 -t I 3

N.PHA

1 lEVEL DT-0.1
- - - 2 LF..Vf_LS DT-O. I "
_-3 LEVELS DT,,O.1

• EXPERIMENT

(b; _.caent.

Unsteady forces and moments; NACA 0012,

M, -- 0.755, k ,. 0.0814, am -- 0.016 ° ,

Ctl = 2.51 °.

(Anderson et al., Ref. 81)

,'ro
F _ ......

• I ,-- ..--" / "=---.p / .-",1

,_, _ ',,...,:, "'_'-. 0,5=

,L /.....Z.:y ° -..o,
• I o-- ...... i

" - | - .:3

-._I ' ' ' J -.-,

c,Lp._:

Fig. 77 Lift and pitch-moment coefficients.
NACA 0012, Moo = 0.755, t_o = 2.51 °,

k = 0.0814, At = 0.005.

(Kandil and Chuang, ref. 146)



Fig. 78

u CM
0 EL* C_

•$ - 0 {_ C_ 0

0

.it

o %-

.1 0 }

0 ":'

_.s _ 1

•S D ,,"

D_

-. ......... ..o--°'°*°

.)l-

°
.? , !

. =. S

- .06

.0_

.03

J .GI

t oi
!

.J - .:_
8

Lift and pitching-moment coefficients,

NACA 0012, M(= = 0.6, (_m = 4.86 °,

so = 2.44 °, k = 0.081, At = 0.01.

(Kandil and Chuang, ref. 146)

Fig. 79

k'T
I.- 0 o
2 -- 90"

o..L_>._ 3 - 180°
4 .... 210"

o-,S'_._ .
d

3 4 CPl 2 I

%

Summary of surface pressure on a rolling delta
wing during one cycle of periodic response for

Moo = 2, (z = 10°, _ = 0.35, k = 1.337, emax = 1._

(Kandil and Chuang, ref. 146)



.2

--.2

o

1.00

(a) y/s = 0.174 (b) y/s = 0.8412

Fig. 80

.

F-5 steady pressure distributions at two spanwise positions for four freestream

Mach numbers and zero degrees angle of attack.

(Anderson, et al., ref. 81)



f

20 (o) y/s - 0.11922

10

"0

"10 t

-20 i

z°ItO (g) y/s - 0,89!2

A
¢J

°1OIL_ , I - I . * , I ' , I
-20

0 .2 .4 .6 .8 1.0 :

x/c

¢j

10

-5

-i0,

n__
(J

(d) ¥/= - 0._922

0 :

(a) M = 0.95, k = 0.264, am = 0% ao = 0.532 °

(

2

-I

-4

5

2

-1

(e) yla - 0.1922

0

¢ 0 ,I) 0 0

(g) y/s - 0.8412

5!

-t

-4

5

(d) y/s . 0._922

(h) yls - o.84t2

0. 2
0

-4 I , I * I * I , I --4 , I , I , I i
0 .2 .4 .6 .8 1.0 0 .2 .4 .e .8

x/c x/c

(b) M = 1.32, k =

-1

0.396, am = 0°, ao = 0.222 °

I

1.0

Fig. 81 Comparison of measured and calculated unsteady pressures on F-5 wing modeE
(Anderson, et al., ref. 81)



]. 82

12--

II --

lJ, I
I

o I

-|

-lo I
.04

,t
I

I

A
l, I,

V

A

J
t

)
I I I I I I |

.04 .12 .111 .20 .24 .211

M.,." 0.112

a ., -1.0"

R0 • 20.7.e

Computed variation of aileron angle with time

showing buzz condition.
(Steger and Bailey, ref. 25)

201

L

,,- 5 li.k

...c 10 "-

• O0 0

c
o.

u 0
i

a -s.-

-1(] . I

e
**,a

/'t

oO
0

..P

I I I !

2O

-- 15

-- 10

t_ 5
¢="

O,

'-? o
w

E

-10
0

]00 0 O0 0 O000f_ _1_'_-'0_

' I L I J

.2 .4 .6 .8 1.0

x/¢

(ai K - 0.0 '_'q

F

1.5

1.0_

0

-.5

NACA 64A010

M_,'0.8. Re'12x 106 . K"0.2

• UPPER SURFACE } EXPERIMENT• LOWER SURFACE

FULL } NAVIER-STOKE5-- THIN-LAYER

-- EULER

t :--'
; a=40

[

e_

v
o.

1.5

1.0

.5

Fig. 84

-.5
I o = 3.0 °

_Q a_

(z -4.0

0--- .S 1.0 0 .5 1.0

xlc x/c

Comparison of calculated and measured
pressure coefficients, for NACA 64A010A
airfoil at shock-induced separation condition,
a=4 °+1 °cosmt.

(Chyu and Davis, ref. 27)

0

' L ' ! I
0 .2 .4 .6 .8 1.0

X/C

Ib) K - 0.2

Fig. 83 Mean and first harmonic complex components of pressure coefficients:

a = 0° + 1" cos _t. (Chyu and Davis, ref. 27)



ORIGINAL PAGE IS

OF POOR QUALITY

1.1

2. 4 G g

c]lpha, 0eg

--257 X 97
---129 X 49
--o65 X 25

o Experiment

, , I , I

,w ..

a) lift coe_cient.

.07/r- --257 X 97

---129 X 49

---55 X 25

.05 o Experiment

us .03

101

-.or i n

2 10 12

• I , I , I

4 6 8

olpha, de<]

Fig. 85

h) moment coel_cient_
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(Rumsey and Anderson, ref. 78)
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(Edwards and Thomas, ref. 1)

Real Imaginary

3F m= i m=

/ _/-- 0.74

L/ _ /-0.,_
Zl/_/ /-0.68 0

C _Cm8

m5

, , , , -21 Vt_-0.74, i
0 .4 .8 1.2 0 .4 .8 1.2

Reduced frequency Reduced frequency

Fig. 91 Calculated pitching moment coefficient for 18% biconvex airfoil with non-isentropic
TS D code.

(Edwards and Thomas, ref. 1)


